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ABSTRACT

The importance of short-pulse laser technology in all branches of science and engineering
continues to grow, increasing demands on their performance. In this thesis, we explore
approaches for advancing such technologies using optical nonlinearity in emerging nano-
materials and fibres to manipulate the spectral and temporal properties of light.

Firstly, we introduce a long-cavity mode-locked fibre laser architecture for generating
high-energy pulses with a giant chirp at low repetition rates. Chirped fibre Bragg gratings
are developed for pulse compression (and peak-power enhancement) by a factor of a
hundred and the system is shown to be an ideal pump source for low-threshold super-
continuum generation in photonic crystal fibre (PCF). Experimental work is supported by
numerical simulations to reveal insight into the pulse dynamics.

Two-dimensional nanomaterials, specifically few-layer transition metal dichalcogenides
such as MoS2 are then considered. We report a harmonic generation microscopy technique
for rapidly characterising the structure and optical properties of nanomaterial samples.
These materials are then integrated into fibre lasers to act as saturable absorbers for pulse
generation by Q-switching and mode-locking. We present a range of sources with pulse
durations from femtoseconds to microseconds and kilohertz to megahertz repetition rates,
operating throughout the near-infrared, highlighting the wide parameter space that can be
accessed. We also propose a theory based on edge states to explain the wideband saturable
absorption.

Finally, we study stimulated Brillouin scattering in PCF with a focus on the role of
acoustic dynamics. With careful choice of wavelength relative to the microstructured fibre
length scales, PCFs are shown to exhibit a stronger Brillouin response than conventional
fibre, which we use to develop a compact self-mode-locked Brillouin laser.

We conclude that emerging nanomaterials and optical fibre designs could be leveraged
to yield tangible benefits for short-pulse laser technology and we place our results in
context of ongoing research.
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1
INTRODUCTION

“Physics would be dull and life most unfulfilling if all physical phenomena around
us were linear. Fortunately, we are living in a nonlinear world. While
linearisation beautifies physics, nonlinearity provides excitement in physics.”

— Yuen-Ron Shen, The Principles of Nonlinear Optics, 1984

The dependence of a material’s optical properties upon the intensity of light has given rise
to a vast and vibrant field of science – nonlinear optics – where a myriad of fascinating
nonlinear phenomena have enabled countless technologies. Progress in nonlinear optics
is directly coupled to laser physics: sources of intense coherent light are required to
investigate fundamental light-matter interactions, which in turn can be exploited to
improve the performance and versatility of such laser systems. Short-pulse lasers are
an exemplary case.1 By utilising nonlinearity, the output of a laser can be transformed
from a continuous wave to periodic bursts of light, significantly raising the peak power
and creating optical sources that expand the parameter space over which light-matter
interactions can be explored.

Short-pulse lasers have been a revolutionary technology, which are now integral tools
in science, industry and medicine. While such devices can be developed with a variety of
materials and geometries, the fibre laser is one of the most promising: enabling flexible,
compact and reliable pulse sources for turn-key operation by the end user.

Optical fibre also presents an ideal platform for nonlinear optics, where the confinement
of light over long distances permits the accumulation of significant nonlinear effects.
Such phenomena were initially considered detrimental (e.g. in the context of optical
fibre communications), although many years of research have transformed the view of
nonlinearity from a challenging obstacle to an opportunity for spectral and temporal
control of light.

Over the last decade, photonic crystal fibres (PCFs) – microstructured fibres enabling
precise control of the guidance properties – have evolved from a research topic into

1There is no standard definition for the duration of a short pulse, but this is generally accepted to describe
pulse widths on microsecond timescales or shorter. Pulses shorter than a few picosecond are typically
called ultrashort and the devices which produce them are known as ultrafast lasers.
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Chapter 1 Introduction

successful commercial products. The ability to precisely define characteristics such as
dispersion enables us to control the magnitude and effect of nonlinearity, presenting
substantial opportunities for enhancing short-pulse lasers systems.

More recently, nanomaterials have emerged as a promising platform for nonlinear optics.
Quantum confinement in such low-dimensional systems gives rise to completely new
physical phenomena and remarkable material properties. In addition to considerable
fundamental interest in nanomaterials, they could yield tangible benefits and new photonic
devices if their novel properties can be practically harnessed.

Laser technology has advanced at a staggering pace over the last 55 years. However,
ever-growing end-user demands for more powerful and versatile devices continue to
drive research in this diverse and exciting field. This thesis explores nonlinear optical
effects manifesting in fibres and nanomaterials and considers if the opportunities they
present could be practically exploited to improve short-pulse fibre laser systems.

1.1 Thesis Overview

This thesis is organised as follows. In this chapter, we introduce the linear and nonlinear
optical phenomena governing light propagation in fibre and techniques to generate short
pulses. The basic properties of photonic crystal fibres and nanomaterials are also discussed.

Chapter 2 presents the development of numerical models for simulating short-pulse
fibre lasers, which have guided much of the experimental work in this thesis. We begin
by considering how to treat electromagnetic propagation mathematically then show how
to compute the properties of common fibre geometries, how to model amplification in a
ytterbium-doped fibre amplifier and how to simulate pulse propagation along lengths of
fibre.

In Chapter 3 we introduce a long-cavity laser architecture for the production of highly
chirped pulses at a low repetition rate. Techniques to compress these pulses are considered
and we demonstrate the system to be an ideal pump source for low-threshold supercon-
tinuum generation in PCF. The nonlinear wave dynamics during radiation build-up in
long-cavity lasers are also discussed.

Chapter 4 reports experimental progress in quantifying and exploiting the nonlinear
optical properties of few-layer forms of transition metal dichalcogenides, specifically
molybdenum disulfide (MoS2). We develop a nonlinear microscopy technique for in-situ
characterisation, then consider the application of the nanomaterial as a saturable absorber
for passive pulse generation.

Stimulated Brillouin scattering in PCF is the focus of Chapter 5. Small-core PCFs are
considered as a medium to enhance the effect and we discuss the impact of the PCF
structure upon acousto-optic interactions. The temporal dynamics of the process are also
explored as a means of generating pulses.

Finally, Chapter 6 concludes the thesis with a critical assessment of the opportunities
offered by new fibres and nanomaterials for short-pulse laser technology. We also consider

2



1.2 Historical Perspective

the broader implications of the work and propose possible routes forward.

1.2 Historical Perspective

The 20th century saw rapid progress in optical science and the birth of many new research
fields including fibre optics, laser physics and nonlinear optics. Here, we present a brief
history of fibre laser technology but note that the full story, including contributions from
thousands of scientists and engineers, is unfortunately beyond the scope of this section.
For a more detailed account, Refs. [Tow99, Hec04, Tay07, Hec10] are recommended to the
interested reader.

Laser Development

In May 1960, Ted Maiman demonstrated the first laser – light amplification by stimulated
emission of radiation – producing a coherent beam of light from a flashlamp-pumped ruby
crystal [Mai60]. This was made possible by many earlier pioneering contributions includ-
ing Albert Einstein’s theory of stimulated emission [Ein17], the development of the maser
[Gor55] and Charles Townes and Arthur Schawlow’s theory of optical masers [Sch58],
not to mention the efforts of independent inventor Gordon Gould who coined the term
‘laser’ [Tay07].

After the first demonstration of coherent light from Maiman’s laser, the field advanced
rapidly and ruby lasers were available commercially within a year, quickly finding medical
applications [Hec10]. Many other types of laser soon emerged, including gas lasers (the
Helium-Neon laser was also the first laser to operate continuously rather than with
pulsed excitation [Jav61]), glass lasers [Sni61b], semiconductor lasers [Hal62] and dye
lasers [Sor66], and our understanding of these devices and their performance quickly
advanced.

Nonlinear Optics

The invention of the laser enabled new experiments to study the interaction of intense
coherent light with matter. The start of this field of nonlinear optics is often taken as Peter
Franken’s seminal observation of second-harmonic generation in quartz [Fra61]. However,
it should be noted that nonlinear optical effects had been observed before this, notably
John Kerr’s report in 1875 and Friedrich Pockel’s work in 1894 which confirmed that the
application of a strong field could change a material’s refractive index [Ker75, Poc94]. Self-
induced nonlinearity (without requiring a strong external field) was also observed as early
as 1941 when Gilbert Lewis2 reported nonlinear fluorescence in an organic dye [Lew41],
although the laser undoubtedly catalysed further progress.

2Gilbert Lewis’s contribution to photonics is particularly notable as he also introduced the word photon in a
1926 letter to Nature: “I therefore take the liberty of proposing for this hypothetical new atom, which is
not light but plays an essential part in every process of radiation, the name photon” [Lew26].

3
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Many other nonlinear effects were observed and explained such as third-harmonic
generation [Ter62], stimulated Raman scattering [Woo62] and stimulated Brillouin scatter-
ing [Chi64], leading to the development of new technologies and applications; not least,
laser wavelength conversion. Further applications and an entirely new field of ultrafast
science were enabled by exploiting nonlinear optical effects to develop short-pulse lasers,
periodically producing bursts of light through mechanisms which later came to be known
as Q-switching [McC62] and mode-locking [Lam64, Har64].

Nonlinear effects are limited by the length of light-matter interaction, which can be
small for light passing through bulk materials. Therefore, one technology which opened
new opportunities in nonlinear optics with the possibility of propagating light through
kilometres of material was the optical fibre.

Optical Fibre

The principle of guiding light by total internal reflection, which underpins the operation
of optical fibres, was initially demonstrated in a water fountain by Daniel Colladon
in 1842 [Col42]. However, it wasn’t until the early 20th century that glass fibres were
considered as waveguides. Initially, bundles of multimode fibres were proposed [Han27]
and demonstrated [Lam30] for transmitting images, targeting medical applications.

However, early fibres suffered from light leakage when in contact with other materials
or contaminants. The introduction of a lower-refractive-index cladding layer around the
fibre solved this problem [vH54], and the reduced index difference between core and
cladding (compared to the difference between a glass core and air cladding) enabled
the fabrication of single-mode fibres [Sni59, Ost59]. Meanwhile, growing demands for
bandwidth in the telecommunications sector encouraged engineers to consider higher
frequencies than radio and microwaves. Optical frequencies and laser sources, combined
with the possibility of waveguide transmission, made optical fibres an attractive platform
for communications, although the high loss remained a barrier to practical long distance
transmission. Charles Kao considered this problem theoretically, concluding in 1966 that
the losses were due to impurities and not intrinsic to silica glass; specifically, he proposed
that fibre attenuation could be reduced to below 20 dB km−1 [Kao66]. This claim stoked
great interest around the world and the Corning Glass Works were later able to produce a
fibre that met this specification [Kap70]. For his contribution, Kao was awarded the 2009
Nobel Prize in Physics. Another key development for optical fibre communications was
the erbium-doped fibre amplifier [Mea87], building upon earlier work by Elias Snitzer on
rare-earth-doped fibres [Koe64], which enabled the development of all-fibre lasers without
any bulk elements.

Low-loss fibres and increasing output powers from laser sources permitted the propa-
gation of high-power light, confined to a small area, over long distances. Nonlinearity,
therefore, was able to play a significant role in the propagation. The field of nonlinear
fibre optics was born.

4



1.2 Historical Perspective

Nonlinear Fibre Optics

The first nonlinear effect to be observed in optical fibres was stimulated Raman scat-
tering [Sto72], shortly followed by stimulated Brillouin scattering [Ipp72b], parametric
four-wave mixing [Sto75a] and self-phase modulation [Sto78]. In a seminal contribution
from Hasegawa and Tappert, it was realised that optical fibres, through a balance between
self-phase modulation and anomalous dispersion [Has73a], could support soliton pulses,
which are stationary (or periodic) pulse solutions of the nonlinear Schrödinger equa-
tion [Zak72]. Experimental verification followed by the end of the decade [Mol80] and
soliton pulse shaping effects quickly became commonplace for the control and generation
of ultrashort pulses. Compression and optical-switching techniques were also developed
using nonlinear fibre-optic effects. Additionally, completely new amplifier and laser de-
signs were developed by exploiting stimulated Raman scattering and four-wave mixing
to demonstrate Raman fibre lasers and parametric oscillators, which could access spectral
regions that were not covered by common rare-earth dopants [Sto75b, Hil76b, Sto82a].

As it became clear that exploitation of nonlinearity, dispersion and their interplay in
fibre could improve the performance of laser systems, researchers began to develop new
designs of optical fibre to enhance their nonlinearity or alter the dispersion map. Small,
highly germanium-doped cores were employed to enhance the fibre nonlinearity (since
germanium has a higher nonlinear coefficient than silica), forming highly-nonlinear fibre
(HNLF) [Sud86] and the geometry of step-index fibres was tailored to yield particular
waveguide dispersion, creating dispersion-shifted fibre (DSF) [Coh79]. However, fundamen-
tal limitations restricted the parameter space of dispersion, nonlinearity, birefringence etc.
that could be accessed by engineering conventional fibre designs.

A breakthrough idea came in 1996, proposing a completely new design of optical fibre:
the photonic crystal fibre (PCF) [Kni96]. Inspired by periodic structures suggested by
Eli Yablonovitch to create a photonic bandgap crystal [Yab87], Philip Russell realised
that low-loss light guidance in a hollow-core fibre could be possible by using a photonic
bandgap from a crystal cladding structure. Due to challenges in fabricating such a complex
structure, the first PCF with a microstructured cladding was produced with a solid-core,
formed by stacking 217 silica capillaries [Kni96]. While the guidance mechanism was
still total internal reflection and there was no transmission bandgap, these fibres enabled
unprecedented control of their properties: the dispersion, nonlinearity, birefringence and
modal content could all be varied over much greater ranges than previously possible,
simply by changing the geometry of the cladding microstructure. The original photonic
bandgap design was also realised in practice two years later [Cre99].

These new fibres heralded new opportunities in the field of nonlinear fibre optics,
helping to push the performance of fibre lasers and systems, enabling completely new
devices and applications. Of particular note is supercontinuum generation: the extreme
spectral broadening of light. Supercontinuum generation depends on a cascade of non-
linear processes which can be controlled by dispersive effects, suggesting PCFs to be an
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ideal platform for this purpose, in addition to a testbed for fundamental studies of the
underlying nonlinear wave dynamics [Ran00].

Fibre Laser Technology

The benefits of the optical fibre format extend beyond their use as a passive waveguide
and platform for nonlinear optics. During the early days of laser research, Elias Snitzer
demonstrated neodymium-doped glass rod lasers and proposed fibre cavity designs,
which paved the way to fibre lasers [Sni61b, Sni61a]. However, the potential benefits
of fibre lasers compared to bulk lasers were not practically realised in this period and
industrial application was limited by their low output power and a lack of suitable and
compact pump sources.

Fibre laser development accelerated quickly, however, after techniques for adding
dopants during the vapour-deposition fabrication process were reported to produce
low-loss active silica fibres [Poo85] and semiconductor laser diodes were introduced as
pump sources [Mea85]. Notably, this work led to the development of erbium-doped fibre
amplifiers [Mea87] with an emission window coinciding with the lowest loss region for
optical fibre – such devices are still the backbone of long distance optical communication
today.

Another important development in doped fibres was the double-clad design, including
both inner and outer cladding layers [Sni88]. The multimode nature of the inner cladding
makes it possible to pump fibre lasers with high-power multimode diodes (offering
significantly higher power than single-mode diodes). The pump light then interacts
with ions in the smaller doped core to achieve a high-brightness single-mode output.
The benefits of the fibre gain medium were also enhanced by the development of fibre-
integrated component such as fused fibre couplers and fibre Bragg gratings, enabling all-fibre
alignment-free laser systems [Kaw81, Kas90]. Additionally, many of the aforementioned
nonlinear effects have been exploited in fibre to extend the performance and versatility of
fibre systems.

Over many years, fibre laser technology has evolved into a mature and commercially
successful industry. Recent progress is considered in detail within the chapters of this
thesis which address various aspects of the field. Therefore, we conclude this section by
noting that the global laser market is now valued at more than $9 billion and short-pulse
fibre lasers represent one of the fastest growing sectors, stemming from great success in
industrial manufacturing and emerging biomedical opportunities [Ove14]. This has only
been possible thanks to the pursuits of generations of scientists and engineers over the
last century.

6



1.3 Light Guidance in Fibre

1.3 Light Guidance in Fibre

1.3.1 Step-Index Fibre

Conventional optical fibres consist of a dielectric core with refractive index ncore enclosed
within a dielectric cladding layer, which has a slightly lower index nclad (Fig. 1.1). This
refractive index profile led to the name step-index fibres. Light is guided by total internal
reflection at the core-cladding interface, enabling energy to be transferred along the fibre.
Typically, the cladding layer material is pure silica and the core is doped silica, includ-
ing dopants such as germanium, aluminium or phosphorous to increase the refractive
index [Agr13].

Core, ncore

Cladding, nclad

r

z

κ = ksinθ

β = kcosθ

k

θ

θ
k=k0neff

nclad

Index

ncore

Vacuum
Wavenumber

k0=2π/λ

Wavevector

Propagation Constant

Transverse Constant

Fig. 1.1: Schematic of a step-index fibre showing the refractive index profile and a prop-
agating ray with the definition of the wavevector and propagation constant. The sig-
nificance of the effective refractive index neff is introduced in Section 1.3.3. A fibre can
support many rays with different angles θ (dependent on fibre geometry), known as
modes, each with a different wavevector.

A simple ray optics picture can be used to describe the propagation of light along the
core of a fibre, governed by the geometry of the structure and Snell’s law. However, for a
more complete description of the optical field, an electromagnetic approach is required
to find wave configurations in the fibre which are solutions to Maxwell’s equations and
satisfy the boundary conditions set by the waveguide structure.

The set of fields meeting this criteria are known as modes.3 The core diameter dc and
refractive index step size (∆n = ncore− nclad) of a fibre determine the number of supported
modes at a given wavelength, which is an important parameter that sets the bandwidth
for data transmission and the brightness of a fibre laser source. Single-mode fibres are
generally preferred for fibre lasers due to the high brightness and high beam quality of
light at the output, which can be focussed to a small diffraction-limited spot. A more
detailed discussion of fibre modes and computation of their propagation characteristics is
presented in Section 2.2.

3Technically, these are guided modes with the energy largely confined to the core as light propagates. Fibres
also support a continuum of unguided radiation modes, where the energy is unconfined and quickly
dissipates. Such radiation modes do not contribute to nonlinear effects and are neglected herein.
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1.3.2 Introduction to Electromagnetism

James Clerk Maxwell famously identified the connection between electromagnetism and
optics in the 1860s, leading to a set of four equations which can be used to describe all
electromagnetic phenomena [Max65]:

∇ ·D = ρ (1.3.1a)

∇ · B = 0 (1.3.1b)

∇× E = −∂B
∂t

(1.3.1c)

∇×H = J +
∂D
∂t

(1.3.1d)

where D and B are electric and magnetic flux densities, E and H are the electric and
magnetic field vectors, ρ is the charge density, J is the current density and t is the time
coordinate. The flux densities for an applied field can also be related to induced electric
and magnetic polarisations, P and M, respectively: D = ε0E + P and B = µ0H + M, where
ε0 and µ0 are the permittivity and permeability of free-space, which are linked to the speed
of light in a vacuum by c = 1/

√
µ0ε0.

For propagation in a non-magnetic (M=0) optical waveguide, without charges (ρ = 0)
or currents (J= 0), these equations can be simplified to a single wave equation [Sny83]:

∇2E− µ0ε0
∂2E
∂t2 = µ0

∂2P
∂t2 (1.3.2)

The electric polarisation P is the dipole moment per unit volume of the medium, resulting
from electrons oscillating about their equilibrium positions in response to an oscillating
electric field. The strength of the electric field and induced polarisation are related by the
electric susceptibility function χ of the material, which can be Taylor expanded into χ(n)

terms, describing the nth order susceptibility [Boy07]:

P = ε0χE = ε0(χ
(1) · E +χ(2) : EE +χ(3) ... EEE + ...) (1.3.3)

When a material polarisation is induced by a field, the oscillating dipoles can radiate
new fields with a phase delay. Since the electric field and induced polarisation are vector
quantities, the susceptibilities are tensors. Consequently, Eqn. 1.3.3 can be used to relate
the direction of the induced material polarisation (and new radiated fields) to the direction
of the incident electric field (i.e. the polarisation of light, where the term polarisation
here is, confusingly, a distinct term to the material polarisation). This enables much
information about the nonlinear response of materials to be determined by comparing the
polarisation of incident light and light generated through nonlinearity, as we demonstrate
in Section 4.2.5.

Finally, it should be noted that this mathematical treatment of nonlinearity embeds all
the atomic and molecular physics describing the origin of the nonlinear response in the
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coefficients χ(n). For a complete analysis, nonlinearity should be considered quantum
mechanically, including the numerous origins (broadly separated into bound-electron
and nuclei mechanisms), each on their own timescales. However, in this thesis the use of
nonlinear susceptibility coefficients χ(n) is sufficient to quantitatively describe observed
phenomena and provide insight into the underlying physics.

1.3.3 Linear Propagation Effects

Solutions to Maxwell’s Wave Equation

A material’s response to low-intensity fields can be considered harmonic, resulting in
linear polarisation of the material. Eqn. 1.3.3 therefore reduces to P = ε0χ

(1)E. In this
case, the general solution to the wave equation (Eqn. 1.3.2) is a monochromatic plane
wave [Agr13]:

E(r, t) = A exp(i[ωt− k · r]) (1.3.4)

where A represents the field amplitude, ω is the angular frequency of light and k is the
wavelength-dependent complex wavevector; r is the spatial position vector and t is the time
coordinate.

To simplify the mathematics, we reduce this to a scalar problem by considering the
electric field of a wave propagating along the axis (z direction) of a lossless fibre and
assume a linear optical polarisation:

E(z, t) = A exp(i[ωt− βz]) (1.3.5)

where β is the axial component of the wavevector (as illustrated in Fig. 1.1). This quantity
is also known as the propagation constant, which describes the wavelength-dependent
phase shift per unit propagation distance: β(ω) = nω/c where n is the refractive index of
the material and c is the speed of light in a vacuum.

By substituting Eqn. 1.3.5 back into the wave equation, the dispersion relation is found:

ω2 =
1

ε0µ0

β2

1 + χ(1)
(1.3.6)

which enables the refractive index to be related to the linear susceptibility χ(1):

n(ω) =
√

1 + χ(1)(ω) (1.3.7)

The refractive index is a complex frequency-dependent quantity, which can be expressed
in terms of a real and imaginary component, n(ω) = nre(ω) + inim(ω). It follows that the
solution to the wave equation can be rewritten to include loss by representing the field as

9



Chapter 1 Introduction

a travelling wave with an exponentially decaying amplitude:

E(z, t) = A exp
[
−αz

2

]
exp [i(ωt− βz)] (1.3.8)

where α is the attenuation coefficient, as determined by the imaginary part of the refractive
index:

α = 2
ω

c
nim(ω) (1.3.9)

and the real part of the refractive index determines the phase velocity:

vp =
c

nre(ω)
=

ω

β(ω)
(1.3.10)

The discussion so far has centred on light propagating in a homogeneous material
with refractive index n. In a fibre, however, the field solution can overlap both core and
cladding materials and is influenced by the waveguide geometry. Therefore, an effective
refractive index neff(ω) is used to describe the propagation, and each supported fibre
mode will have a different effective index and propagation constant. Additionally, fields
consisting of a finite-width spectrum (such as a pulse) can be described by summation of
the many monochromatic plane wave solutions to the wave equation within this spectrum.

Chromatic Dispersion

The frequency dependence of the effective refractive index dictates that the phase veloc-
ity in a medium depends on the optical wavelength. This effect is known as chromatic
dispersion, consisting of two contributing effects: material dispersion and waveguide disper-
sion [Agr13].

Material dispersion arises from the difference between oscillation amplitudes of the
bound electrons in a medium for different incident frequencies, which are related to
absorption resonances. For wavelengths far from a resonance, the material refractive index
is well approximated by the Sellmeier equation [Sel71, Mal65]:

n2(λ) = 1 + ∑
j

Ajλ
2

λ2 − B2
j

(1.3.11)

where the coefficients Aj and Bj relate to the strength and wavelength of the jth resonance.

Waveguide dispersion arises because the field of a guided mode is spatially confined
and overlaps both core and cladding materials (specifically, this changes the tilt of the
wavevector with respect to the fibre axis). The spatial extent of the field is strongly
frequency-dependent, thus the effect of the waveguide structure on the phase delay
during propagation depends on the wavelength of guided light.

To consider the effect of chromatic dispersion mathematically, the propagation constant,

10



1.3 Light Guidance in Fibre

β, is Taylor expanded about the centre frequency of the propagating light, ω0 [Agr13]:

β(ω) = β0 + β1(ω−ω0) +
1
2!

β2(ω−ω0)
2 +

1
3!

β3(ω−ω0)
3 + ... (1.3.12)

where
βn =

(
dnβ

dωn

)
ω=ω0

(1.3.13)

Dispersion has a particularly important effect on pulsed light, since narrow pulses
possess a broad spectrum. The envelope of the pulse propagates at the group velocity vg,
which is related to the first-order propagation constant term by:

vg =
1
β1

(1.3.14)

The group velocity of different spectral components within the envelope can vary, which
is known as group velocity dispersion (GVD). This is described by β2 (ps2 km−1), which
is the derivative of the inverse group velocity with respect to frequency. The GVD of a
waveguide is more commonly represented by the dispersion parameter, D (ps nm−1 km−1 )
[Agr13]:

D =
dβ1

dλ
= −2πc

λ2 β2 (1.3.15)

Higher order terms such as third-order dispersion should also be included in a thorough
treatment of dispersion, especially in cases where the GVD is almost zero.

A key parameter for fibres is the zero-dispersion wavelength (ZDW), as the sign of dis-
persion D determines the nonlinear phenomena that can be observed. When D > 0,
low-frequency (long wavelength) waves propagate with greater group velocity than high-
frequency light, termed normal dispersion. The reverse occurs for D < 0, referred to as
anomalous dispersion.4

The impact of these effects is considered for the fundamental mode in a standard
step-index telecommunications fibre, such as Corning SMF-28e, with a core diameter
dc = 8.2 µm and a refractive index step of ∆n = 0.005 (the numerical modelling procedures
to obtain this data and to perform subsequent simulations are presented in Chapter 2).
Fig. 1.2 shows the contributions of the silica material and the waveguide geometry to the
total effective refractive index and the fibre dispersion. To first-order accuracy, the net
dispersion can be found by summing the separate material and waveguide effects [Mar79].
It can be seen that the dominant contribution is from the material, especially at shorter
wavelengths, due to strong confinement of light to the core (at wavelengths below 1200 nm,
more than 85% of the optical power is in the core).

To elucidate the role of dispersion, we consider its effect on a transform-limited pulse. The

4‘Normal’ and ‘anomalous’ can also be used to refer to the phase velocity dispersion, rather than the
group velocity dispersion. In this case, dn

dλ < 0 indicates normal dispersion (which is exhibited by silica
throughout the transparency window). However, as is typical in the fibre-optic community, we use these
terms in the context of GVD.
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Fig. 1.2: Properties of standard telecommunications fibre showing the contributions of
material and waveguide effects (numerically computed): (a) effective refractive index;
(b) dispersion.

term transform-limited defines the width of the pulse spectrum as the minimum possible
value for the given pulse duration, as mathematically determined by the Fourier transform.
Therefore, there is no change in instantaneous frequency across the pulse and if one was
to probe the spectral content of a small time-slice of the pulse, the full bandwidth would
be observed. However, various optical phenomena can impart a time dependence on the
instantaneous frequency, which is known as a chirp. Different mathematical definitions of
chirp exist in the literature but here, we define the term to be the change in instantaneous
frequency (differentiated phase delay with respect to time) about the centre frequency ω0.
This is illustrated in Fig. 1.3: a linearly up-chirped pulse is shown with a gradual change
in the instantaneous frequency across its duration, compared to a transform-limited pulse
with a constant frequency at all times. It should be noted that both pulses have the
same envelope amplitude and thus, the same intensity / power profile (related to the
amplitude squared) that could be measured by recording the time-dependent optical
power experimentally. This highlights that to fully describe an optical pulse, both the
intensity and phase must be known. Another important metric for quantifying pulses is
the time-bandwidth product (TBP): the product of the pulse duration and spectral width.
A minimum value exists for transform-limited pulses, which is 0.315 for sech-shaped
envelopes. Chirped pulses will yield higher TBPs [Agr13].

We demonstrate the effect of dispersion by simulating the propagation of a transform-
limited sech-shaped pulse, which is described by a time-dependent power profile:

P(t) = P0 sech2
(

t
t0

)
(1.3.16)

where P0 is the peak power, t0 is the 1/e duration, which is related to the full width at half
maximum (FWHM) pulse duration by tfwhm = 1.76 t0. The pulse profile and spectrum for
the input pulse with P0 = 30 W and tfwhm = 1 ps, centred at a wavelength of 1550 nm are
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Fig. 1.3: Electric field and envelope amplitudes for a transform-limited and up-chirped
pulse. The instantaneous frequency of the field increases with time in the chirped pulse,
but is constant in the transform-limited case.
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shown in Fig. 1.4.

As this pulse propagates along a fibre with normal dispersion, D = −15 ps nm−1 km−1

(loss and nonlinearity are neglected), the temporal envelope broadens and reduces in
amplitude (Fig 1.5a) since different spectral components within the pulse spectrum travel
at different group velocities. The total pulse spectrum is unchanged, although dispersion
spreads the spectral content linearly throughout the pulse duration. Therefore, the output
pulse is up-chirped: the leading part of the pulse contains the longer wavelengths (lower
frequencies) and the trailing edge consists of the shorter wavelengths (higher frequencies).
If the dispersion is anomalous, D = +15 ps nm−1 km−1, the output pulse and spectral
intensity are identical, although the sign of the frequency sweep is reversed, causing a
down-chirp (Fig 1.5b).

Finally, it should be noted that this discussion of dispersion can apply for each guided
mode in a fibre. While material dispersion is unchanged, each mode has a different spatial
shape and hence, experiences different waveguide dispersion. If an incident pulse excites
multiple modes in a fibre, each with different group velocities, this can be a further source
of temporal broadening during propagation, known as intermodal dispersion.

Attenuation

The intensity of light in a fibre will decrease as it propagates due to various loss mech-
anisms, which are spectrally dependent (Fig. 1.6). Silica has a transmission window
extending from ∼300 to 2400 nm, limited by absorption from electronic resonances at
ultraviolet (UV) wavelengths and vibrational resonances of the glass network in the in-
frared (IR) region [Wal86]. In addition to increasing absorption near a resonance, the
refractive index is increased due to a larger phase delay from the oscillating dipoles.
The relationship between absorption and dispersion is expressed by the Kramers-Kronig
relations [Kra27, Kro25], and explains the sharp increase in the material refractive index
as the wavelength approaches the UV electronic resonance (Fig. 1.2).

Within the transmission window, Rayleigh scattering represents the dominant loss,
arising due to random density fluctuations in the amorphous glass structure on sub-
wavelength length scales. Additionally, impurities in the fibre can introduce loss peaks:
the presence of moisture during fibre manufacture leads to hydrogen bonding to the silica
network, producing SiOH groups [Sto82b]. OH has a strong absorption band at∼2700 nm,
and additional absorption peaks arise at harmonic frequencies (known as overtones) and
from mixing between silica and OH vibration frequencies. These are often called water
absorption peaks, of which the strongest contribution is at ∼1384 nm [Sto82b, Wal86].
It should also be noted that light can be attenuated by confinement loss, where energy
from the mode leaks out, although this is generally negligible for conventional step-
index fibre and is only considered for PCFs. Modern step-index fibres are capable of
exhibiting a loss below 0.5 dB km−1 from 1200-1700 nm, reducing to ∼0.2 dB km−1 in the
telecommunications band around 1550 nm [Agr13].
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Fig. 1.5: Simulated propagation of a 1 ps transform-limited pulse along a linear dispersive
fibre (neglecting nonlinearity) with (a) normal and (b) anomalous dispersion. The outer
plots show the evolution of the pulse (left) and spectral (right) intensities with distance;
the inner plots show the pulse shape, chirp and spectral shape at the input and output.
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Birefringence

Ideal single-mode optical fibres are isotropic structures which can support two identical
propagation modes polarised in orthogonal directions. In practice, however, random
variations in core shape from manufacturing imperfections and mechanical/thermal
stresses break the circular symmetry. Therefore, optical fibres exhibit birefringence as the
two polarisation axis modes have different propagation constants [Pas08].

For pulse propagation, this can lead to temporal broadening if the input excites modes
in both polarisation axes since the two modes can have different group velocities. This is
known as polarisation-mode dispersion.

Additionally, the state of polarisation of light in the fibre can change during propagation
due to coupling and energy transfer between these two modes. External disturbances
can also change the fibre birefringence, making it difficult to predict the output pulse
properties since the change in polarisation inside the fibre is effectively random.

Polarisation-maintaining (PM) fibres solve this problem by possessing a strong built-in
birefringence. This can be achieved by the making the core shape elliptical or by including
stress rods in one axis (either in cylindrical or bow-tie shaped designs), which becomes
known as the slow axis and possesses a larger index than the orthogonal fast axis (Fig. 1.7).
It follows that random perturbations of each axis index will be small compared to the
intrinsic birefringence, negating their effect. For a more complete understanding based
on mode-coupling, it should be noted that the very different propagation constants along
the two axes due to high birefringence causes the relative phase between them to be
short-lived so mode-coupling is very inefficient [Pas08]. Therefore, if light is launched
along one axis, the state of polarisation can be maintained along the fibre even in the
presence of external disturbances.

Fast Axis

Slow
Axis

Stress Rod

Core

Panda Bow-Tie Elliptical
Core

Fig. 1.7: Cross-sections of different designs of polarisation-maintaining high-
birefringence fibre.

1.3.4 Nonlinear Propagation Effects

A material’s response to an electric field will become nonlinear for high-intensity fields. In
this case, the higher-order susceptibility terms in Eqn. 1.3.3 cannot be neglected. However,
all even-order terms (χ(2), χ(4), etc.) are zero in fibre since the glass material possesses
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inversion symmetry (specifically, this is due to the amorphous nature of the glass structure
as silica molecules are actually non-centrosymmetric and thus lack inversion symmetry).
The strength of the nonlinear terms reduce with increasing order, meaning that the only
significant nonlinearity in silica fibres is third-order (χ(3)). A variety of different nonlinear
phenomena can occur, manifesting from two fundamental mechanisms: the Kerr effect and
stimulated inelastic scattering [Boy07, Agr13].

The Kerr effect is an instantaneous5 nonlinear response which originates from optical
interaction with electrons of the medium, leading to an intensity-dependent refractive
index. This depends on the real part of χ(3) and leads to effects such as self-phase modulation,
cross-phase modulation and four-wave mixing.

Two inelastic scattering mechanisms are considered in fibre: Raman and Brillouin scat-
tering, both of which are non-instantaneous. Raman scattering arises from interaction
between light and optical phonons (i.e. quanta of lattice vibrations), whereas Brillouin
scattering is due to acoustic phonon interaction. The acoustic phonons are essentially sound
waves, with adjacent atoms being displaced in the same direction; optical phonons result
in displacement of adjacent atoms in opposite directions. At low optical intensities, these
inelastic scattering processes are spontaneous and driven by thermal fluctuations; they can
be described by linear optics since the scattered intensity is proportional to the incident
power. At high intensities, however, interaction between incident and scattered light can
nonlinearly enhance the process (effectively providing positive feedback). This can result
in strong stimulated nonlinear scattering effects, which are related to the imaginary part of
χ(3).

Each of these effects can be usefully exploited to achieve a particular optical function, or
can manifest as an unwanted source of loss or distortion depending on the application. We
now briefly summarise these nonlinear phenomena, providing the toolkit of nonlinearity
from which to develop enhanced photonic devices.

Self-Phase Modulation

Self-phase modulation (SPM) is a self-induced phase delay arising as the phase velocity is
determined by the medium’s refractive index, which varies with the light intensity due to
the Kerr effect [Sto78]. To consider this quantitatively, the real part of the refractive index
can be expressed as:

n(ω, I) = n0(ω) + n2 I (1.3.17)

where I = |E|2 is the optical intensity, n0 is the linear index and n2 is introduced as the
nonlinear index, which for silica is accepted as n2 = 2.74× 10−20 m2 W−1 and is almost
wavelength-independent [Mil98].

For pulsed excitation, the nonlinear refractive index results in a phase delay with the
same shape as the pulse envelope. Differentiating this time-dependent phase with respect

5Strictly, a response is never instantaneous, but this assumption holds in silica for pulses longer than ∼10 fs,
as considered in this thesis.
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to time yields the instantaneous frequency, which is also time-dependent. Therefore, SPM
adds a nonlinear chirp to the pulse.

To illustrate this effect, we simulate a 1 ps duration, 30 W peak-power, transform-
limited sech-shaped pulse (introduced in Eqn. 1.3.16) propagating along a dispersionless
(D = 0) nonlinear fibre. The nonlinearity of fibre is commonly described by the nonlinear
coefficient:

γ =
2 π n2

λ Aeff
(1.3.18)

where Aeff is the effective area of the mode shape in the fibre, defined as:

Aeff =

(∫
I dA

)2∫
I2 dA

(1.3.19)

Here, we set γ = 2 W km−1, which is typical for telecommunications fibre. As the pulse
propagates, the spectrum broadens as new frequencies are created by the time-varying
phase delay and the output pulse is nonlinearly chirped (Fig. 1.8). The pulse duration and
intensity, however, are unchanged.

While this simulation is instructive, it is unphysical to model a fibre without disper-
sion. Consequently, we now consider more realistic situations with both dispersion and
nonlinearity, to explore the interplay between these two effects.

First, we study propagation with normal dispersion and nonlinearity, using D =

−15 ps nm−1 km−1 and γ = 2 W km−1 (Fig. 1.9a). The pulse broadens in both time
and wavelength space: temporal spreading is greater than with dispersion alone due to
the SPM-widened spectrum, although the spectral broadening is reduced as the pulse
peak power falls as it disperses. Dispersion also acts to linearise the SPM-induced chirp,
resulting in a relatively linear up-chirp. This pulse shaping mechanism and the nature
of the chirp is exploited in Chapter 3 to develop a low repetition rate, high-energy pulse
source.

Next, we consider the interaction between anomalous dispersion and nonlinearity, with
D = +15 ps nm−1 km−1 and γ = 2 W km−1(Fig. 1.9b). Remarkably, neither the spectrum
nor pulse change during the propagation. Such pulses are known as fundamental solitons.

Solitons

Fundamental solitons are solitary pulses which propagate at a constant speed without
temporal or spectral evolution, maintained by a balance between anomalous dispersion
and SPM [Zak72, Has73a]. Specifically, anomalous dispersion and SPM generate opposite
chirps, which under certain conditions can perfectly cancel out. For a given fibre group
velocity dispersion β2 and nonlinear coefficient γ, a sech-shaped pulse with a 1/e duration
t0 will propagate as a soliton if the peak power is:

P0 =
|β2|2 N2

γ t2
0

(1.3.20)
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Fig. 1.9: Simulated propagation of a 1 ps transform-limited pulse along a nonlinear fibre
with (a) normal and (b) anomalous dispersion. The outer plots show the evolution of the
pulse (left) and spectral (right) intensities with distance; the inner plots show the pulse
shape, chirp and spectral shape at the input and output.
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where N is the soliton order, which is one for a fundamental soliton. For the simulated
fibre in Fig. 1.9, the fundamental soliton power for a 1 ps FWHM pulse is 30 W, which
explains our choice of pulse peak power to illustrate this effect.

Higher-order solitons (N > 1) can also exist in fibres, with a peak power N2 times
greater than the N = 1 soliton. These pulses are effectively a co-propagating group of
N fundamental solitons and mutual interference between these components leads to a
periodic evolution (in the absence of perturbations and higher order effects such as Raman
scattering), as shown for an N = 2 and N = 3 soliton in Fig. 1.10. The period is equal to a
characteristic length scale known as the soliton period:

z0 =
π

2
t2
0

β2
(1.3.21)

which is 26.4 m for the simulations shown in Fig. 1.10. It should also be noted that pulses
propagating in anomalously dispersive fibre at arbitrary powers with non-sech-shaped
envelopes can evolve into solitons. Soliton dynamics underpin many nonlinear fibre-optic
devices, such as supercontinuum light sources, which we demonstrate and discuss further
in Section 3.4.

From a more general perspective, solitons are a complete field of mathematical physics,
which manifest as a balance between spreading and focussing effects in many physical
systems beyond fibre-optics (e.g. hydrodynamics [Rus44] and Bose-Einstein conden-
sates [Rup95]). Mathematically, solitons are analytical solutions of the nonlinear partial
differential equations which describe these systems. Analytical solutions also exist in
the case of normal dispersion and nonlinearity, known as dark solitons, in contrast to the
bright solitons described above. We have observed these dark structures within simula-
tions of the bright pulse formation dynamics in mode-locked fibre lasers, as discussed in
Section 3.5.

Cross-Phase Modulation

Cross-phase modulation (XPM) is the phase delay of an optical signal produced by a different
wave, which is co-propagating with the signal [Isl87]. The mechanism is similar to SPM,
but the change in refractive index experienced by the signal beam is determined by the
intensity of the other wave, which can be expressed as [Agr13]:

∆nXPM(ω1) = 2n2 I(ω2) (1.3.22)

where n2 is the same nonlinear index introduced to describe SPM and I(ω2) is the intensity
of the second wave. XPM can be practically utilised to synchronise two mode-locked fibre
lasers or for pulse diagnostics, but can also cause problems in optical systems such as
channel cross-talk in optical fibre communications.
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Fig. 1.10: Simulated propagation of a 1 ps transform-limited pulse along an anomalously
dispersive nonlinear fibre with peak power corresponding to an (a) N=2 soliton and (b)
N=3 soliton. The outer plots show the evolution of the pulse (left) and spectral (right)
intensities with distance; the inner plots show the pulse shape, chirp and spectral shape
at the input and output.
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Four-Wave Mixing

Four-wave mixing (FWM) is the general term for coupling between four waves through
the real part of χ(3), which can be used to generate light at different wavelengths from the
pump light [Sto75a].6 Energy conservation dictates that:

ω1 + ω2 = ω3 + ω4 (1.3.23)

where ωi is the angular frequency of the ith wave.

Numerous different mechanisms exist to achieve wavelength conversion, either seeding
the FWM process from noise or with pump and signal inputs to amplify the signal. All four
waves can be at different frequencies (non-degenerate / two-pump FWM), two-waves can
be at the same (pump) frequency (semi-degenerate FWM), three-waves can be at the same
frequency (third-harmonic generation) or all four waves can be at the same frequency
(degenerate FWM).

In fibre systems, semi-degenerate FWM is often exploited, with energy transfer from
the two degenerate pump waves (ω1 = ω2) to a lower frequency (ω3) known as the Stokes
signal and a higher frequency (ω4) known as the anti-Stokes signal. Efficient FWM can only
occur in fibres if the process is phase-matched – i.e. a fixed phase relationship between the
waves must be maintained during propagation. This condition corresponds to minimising
the phase mismatch, given by [Agr13]:

∆k = β(ω1) + β(ω2)− β(ω3)− β(ω4) + 2γP0 (1.3.24)

where the fibre propagation constants determine the linear phase mismatch and 2γP0

accounts for a nonlinear phase shift. By solving this equation for a range of pump
wavelengths, the intensity-dependent phase-matched Stokes and anti-Stokes wavelengths
can be found, which are plotted for a standard telecommunications fibre in Fig. 1.11a.
We illustrate the effect of four-wave mixing for wavelength conversion by simulating a
250 W peak power 50 ps pulse at 1290 nm input into this fibre. As the pulse propagates,
sidebands emerge at ∼1115 nm and ∼1529 nm (the phase matched wavelengths for a
1290 nm pump) and grow in intensity, also experiencing spectral broadening from SPM
(Fig. 1.11b). This technique can enable the generation of light at difficult-to-access spectral
regions (e.g. where a suitable laser gain medium is not available).

Stimulated Raman Scattering

Raman scattering is the inelastic scattering of photons from molecular vibrations and
rotations, which downshift the light frequency by the energy of the vibrational/rotational

6In a rigorous mathematical treatment, most χ(3) processes are actually treated as four-wave interactions,
although many of these waves are often the same frequency, zero or negatives of each other – e.g. the
intensity-dependent index can be described energetically by ω = ω − ω + ω [New11]. Practically,
however, the term FWM is commonly used to describe χ(3) processes for wavelength conversion.
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Fig. 1.11: Four-wave mixing in fibre: (a) power-dependent phase-matching curves for
standard telecommunications fibre; (b) simulation showing growth of sidebands about
the pump, seeded by noise.

mode [Ram28, Sto72]. This can be described quantum mechanically as the annihilation
of a pump photon to generate an optical phonon and a lower-frequency Stokes photon.
Raman scattering occurs spontaneously at low pump intensities but becomes stimulated
as the pump intensity increases due to feedback, where the presence of both pump and
Stokes fields drives further vibrations and results in strong scattering.

The amorphous nature of silica means the molecular vibration frequencies of the ma-
terial spread out and form a continuum, giving a broad gain bandwidth of ∼40 THz,
peaked at a shift of 13.2 THz from the pump (Fig. 1.12a). Since Raman scattering is
related to molecular vibrations and the motion of nuclei, which are much heavier (and
slower) than electrons, the process cannot be considered to be instantaneous. Instead, the
Raman response can be described by oscillations with a period less than 100 fs, which
corresponds to the THz frequency shift (greater physical insight into this process is offered
in a discussion of how Raman gain can be numerically modelled in Section 2.3.2).

At very high pump intensities, the Stokes light can become sufficiently intense to act as
a pump for a higher Stokes order, cascading the process to greater frequency shifts from
the original pump wavelength. The Raman scattering process can be seeded by either an
input signal (to provide distributed amplification) or by noise.

A simulation demonstrating the effect of stimulated Raman scattering is shown in
Fig. 1.12b: as a 10 ps pulse at 1550 nm propagates, the spectrum is initially broadened
by SPM, before becoming depleted as light is converted to the Stokes line at ∼1660 nm
(13.2 THz from the pump wavelength). The gain shape is wavelength independent and
the process is automatically phase-matched, making Raman scattering a useful process for
wavelength conversion and for distributed amplifiers (particularly useful for long-distance
telecommunications).
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Fig. 1.12: Stimulated Raman scattering in silica fibre: (a) Raman gain spectrum (modelled
as discussed in Section 2.3.2); (b) simulation showing pump depletion and transfer of
energy to the Stokes line.

Stimulated Brillouin Scattering

Brillouin scattering is the inelastic scattering of light from acoustic waves propagating in
the fibre core [Bri22, Ipp72b]. The acoustic waves modulate the material density, causing
a periodic refractive index modulation that effectively creates a Bragg grating structure.
Therefore, a fraction of the pump light is reflected (backscattered) and downshifted in
frequency by the Doppler shift of the difference in propagation velocities of the optical
and acoustic waves. This backscattered light is referred to as the Stokes signal (Fig. 1.13).

At low pump intensities, spontaneous Brillouin scattering occurs, with acoustic waves
arising from thermally-induced periodic density variations, creating a very weak Bragg
grating effect. However, significant backscattering can be achieved under intense pump
illumination as the beating between pump and backscattered light reinforces the acoustic
wave through electrostriction. This regime, in which strong scattering results from pump-
induced acoustic waves, is known as stimulated Brillouin scattering (SBS).

The frequency shift and width of the Brillouin gain spectrum are wavelength dependent,
but are typically ∼11 GHz and ∼20 MHz (at 1550 nm), respectively. The shift is clearly
much smaller, and the gain much narrower than for Raman scattering, which can be
understood by the different nature of acoustic and optical phonons. While molecular
vibrations are highly oscillatory and decay rapidly, acoustic waves travel at a slower
velocity of ∼6000 m s−1 in silica and have a longer lifetime of ∼10 ns. Additionally, the
acoustic waveguiding properties of optical fibres can have a great effect on the Brillouin
scattering process, which we explore in Chapter 5. Stimulated Brillouin scattering is
usefully used in many sensing applications, although it can also be a major limitation by
restricting the transmission of high optical intensities.
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Fig. 1.13: Stimulated Brillouin scattering in silica fibre: (a) Brillouin gain spectrum at
1550 nm (modelled by a Lorentzian spectrum [Boy07]); (b) illustration of forwards-
travelling pump and acoustic waves, causing energy transfer to the backscattered Stokes
wave.

1.4 Photonic Crystal Fibre

While conventional optical fibres have enabled many nonlinear fibre-optic-based devices,
there are fundamental limitations to the fibre properties that can be achieved. Due to core-
confinement of the fundamental mode, material dispersion is the dominant contributing
factor to the net dispersion profile, giving a ZDW at ∼1270 nm [Mal65]. It is possible to
shift this through waveguide dispersion to longer wavelengths, although not significantly
towards shorter wavelengths, restricting applications such as pulse compression and con-
trolling supercontinuum generation, where anomalous dispersion at visible wavelengths
is desirable [Dud10]. The nonlinearity of conventional fibres can be enhanced by core-size
reduction and doping with materials that have a higher nonlinear coefficient, although
there are also limits here on the required core-cladding index contrast for guidance in
small-core fibres and highly-doped cores can present problems when splicing to normal
fibres. This inflexibility led to a search for new designs of optical fibre waveguides. One
proposed solution was photonic crystal fibre (PCF).

PCFs, which are also known as holey fibres (HFs) and microstructured optical fibres
(MOFs), consist of a microstructured cladding with periodically arranged air holes [Kni96].
The fibre material is typically silica and the air holes are arranged in a hexagonal shape
(Fig. 1.14a). The structure is described by two key parameters – the air hole size d and the
pitch (i.e. hole-to-hole spacing) Λ – and the waveguiding properties of the fibre can be
significantly varied by adjusting the air-fill fraction (d/Λ). Scanning electron microscope
(SEM) images of low (d/Λ ∼ 0.4) and high (d/Λ ∼ 0.9) air-fill fraction PCFs are shown in
Figs. 1.14b & c respectively.

The core of a PCF can be solid (formed by removing an air hole from the centre of the
microstructure) or hollow (by making a large central air hole). Light in hollow-core PCFs
is guided in the core by a photonic bandgap effect [Cre99]. Since the nonlinearity of air is
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Fig. 1.14: Solid-core PCF structures: (a) schematic illustration; SEM image of (b) low
air-fill fraction (d/Λ ∼ 0.4) PCF and (c) high air-fill fraction (d/Λ ∼ 0.9) PCF.

low, these fibres exhibit greatly reduced nonlinear coefficients, which can be useful for
high-power short-pulse delivery applications, but they are not considered further in this
thesis. While the photonic bandgap of the cladding can influence light in solid-core PCFs,
the guidance is best described by analogy with a step-index fibre: the cladding region
of silica and air holes has a lower index than the solid silica core, so light is guided by
total internal reflection [Kni98] (the guidance properties are discussed in more detail in
Section 2.2.2 on PCF modelling).

Compared to the small permissible core-cladding index contrast of a few percent for
conventional fibre, PCFs can support differences exceeding 25% [Rus06]. This enables
much stronger waveguide dispersion (which can even become the dominant effect over
material dispersion). Therefore, PCFs offer great flexibility for engineering the net fibre
dispersion and it has been possible to fabricate fibres with ZDWs in the visible spectral
region and even with double and triple ZDWs [Kni00]. Very small fibre cores can also
be realised, with properties approaching those of a glass strand in air where the strong
confinement yields a large nonlinear coefficient. Additionally, PCF structures have enabled
stronger birefringence than standard fibres [OB00] and novel properties such as endlessly-
single-mode operation [Bir97] and tailorable acoustic interactions [Dai06]. While the ease
of handling and attenuation values of PCF are worse than standard fibre at present, as the
technology advances the loss continues to be reduced and compatibility is emerging with
existing fibre systems (for example, relatively low-loss fusion splicing between standard
fibre and PCF is now commonplace).

1.5 Short-Pulse Fibre Laser Technology

Fibre lasers are broadly categorised as any laser where the active gain medium is an
optical fibre. These devices offer numerous advantages over bulk crystal, dye and gas
alternatives, including excellent diffraction-limited beam quality (M2 values close to
the optimum value of 1), high efficiency and rapid heat dissipation through the large
surface area of the medium (air cooling is therefore sufficient, which consequently enables
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high power handling) [Pas08]. Additionally, all-fibre laser systems can be constructed
without any bulk elements in the cavity, offering turn-key alignment-free operation with a
small-device footprint since fibres can be coiled and packed into compact devices.

The vast majority of fibre lasers are based on energy transitions from rare-earth ion
dopants embedded in the silica fibre core. However, it is also possible for lasing to be
achieved using nonlinear gain from the processes we outlined in Section 1.3.4, such as in a
Raman laser, Brillouin laser or a fibre optical parametric oscillator.

For any given application, in addition to choosing the active medium to provide gain at
the required wavelength, the time-domain properties of the laser output are an important
consideration. In many cases, a series of short optical pulses are preferred to a continuous
wave of light (for instance, in laser machining, sub-picosecond pulses are often used
to minimise heating of the workpiece, resulting in higher quality manufacturing with
better precision [Ste10]). The pulse duration, repetition frequency and energy are all key
parameters which may be specified by end users.

In this section, we briefly review common rare-earth ions for fibre lasers and techniques
for generating short pulses.

1.5.1 Rare-Earth-Doped Fibre Lasers

Rare-earth ions from the lanthanide series of the periodic table are widely used active
dopants, each with a unique absorption and emission spectrum [Dig01]. Optical pumping
within an absorption band excites electrons from the ground state of the material to a
higher-energy metastable level, which can create a population inversion. This enables
stimulated emission and a signal to experience gain if its wavelength lies within an
emission band (i.e. at a resonant frequency).

Early fibre lasers were predominantly based on neodymium Nd3+-doped7 glass, with
emission bands at ∼1060 nm and ∼1320 nm, following the pioneering work of Elias
Snitzer [Sni61b]. Since then, silica fibres have been doped with many different rare-
earth materials and shown to enable laser action. Today, the most important elements
are [Dig01]:

• Ytterbium (Yb3+), which has a similar emission window at ∼1060 nm to Nd3+, but
the absorption band at ∼980 nm is closer in wavelength (compared to ∼808 nm for
Nd3+), reducing the quantum defect and improving the high-power handling.

• Erbium (Er3+), which can provide gain at ∼1550 nm, overlapping with the loss
minimum of silica fibres and consequently becoming the dominant dopant for
telecommunications applications.

• Thulium (Tm3+), which has a broad emission window around 1900 nm where
demands for laser sources are currently increasing, fuelled by applications in military

7For optical applications, the trivalent (3+) form of rare-earth ions is predominantly used since it is the most
stable.
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countermeasures and molecular spectroscopy.

Fig. 1.15 shows the emission cross sections (a quantity that describes the likelihood of
stimulated emission) for these three main dopants. The high-intensity feature at 975 nm
for ytterbium (with a peak at ∼25× 10−25 m2) is not shown in full here since the detailed
spectroscopy of ytterbium and further discussion regarding the modelling of ytterbium-
doped fibre amplifiers is presented in Section 2.4.

It is apparent that wide gaps exist in the near-infrared region which are not covered
by these three rare-earth ions, driving research to consider other dopants to operate here,
in addition to operating at visible and mid-infrared wavelengths. For instance, bismuth
is emerging as a suitable dopant with emission in the 1150 to 1550 nm region [Dia12].
Additionally, many opportunities are offered by moving away from silica glass as the
host material, since silica has a limited transmission window and relatively high phonon
energy that reduces the upper-state lifetime of closely-space energy levels, inhibiting lasing
from certain transitions. Fluoride fibres are suitable candidates and have been shown
to lase at visible wavelengths when doped with praseodymium (Pr3+) or dysprosium
(Dy3+) [All91, Lim00]. Additionally, erbium and thulium also have other emission bands
(not shown in Fig. 1.15), which are inhibited from lasing in silica but can operate with
fluoride hosts. Er3+-fluoride fibre lasers have been demonstrated at 2900 nm [Pol01] and at
500 nm (by upconversion) [Whi91], and Tm-fluoride fibres have been used to produce blue
upconversion lasers [Gru92a]. However, the lower loss, greater environmental stability
and ease of handling of silica fibres has enabled silica to remain as the dominant glass
host for fibre lasers to date.
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Fig. 1.15: Emission cross-sections of common rare-earth-dopants in silica fibres. Data
sources: Ytterbium [Pas97], Erbium [Bar91] and Thulium [Jac99].

1.5.2 Short-Pulse Generation

Pulse generation, in the simplest implementation, could be achieved by a continuous wave
(cw) laser source propagating through a fast on-off modulator. While this is adequate for
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some applications, the efficiency can be poor (as directly related to the modulator duty
cycle) and the pulse duration and light extinction are limited to the modulator switching
speed and modulation depth. Therefore, more sophisticated techniques are often required,
typically by modulating the field inside a laser cavity, either by Q-switching, mode-locking
or gain-switching [Sve10].

Q-Switching

Q-switching generates optical pulses by modulating the laser cavity quality factor, or Q
factor, which is the ratio of energy stored in the cavity to energy lost in each oscillation
cycle. Q factor modulation is achieved by inserting an optical loss modulator into the
cavity. The modulator is initially set to yield high losses (low Q factor), which prevents
lasing. Energy accumulates in the gain medium as the laser is pumped, increasing the
population inversion. When the cavity loss is switched low (high Q factor), the optical
power in the cavity increases sharply. This saturates the gain medium, causing the power
to decay and resulting in the formation of a burst of light, i.e. a pulse. By cycling the loss
modulation, a train of short pulses is produced, as illustrated in Fig. 1.16.

The loss modulator can be an actively controlled device such as an electronic shutter
or a passive element exhibiting intensity-dependent absorption, known as a saturable
absorber (SA). Passive Q-switching eliminates the need for complicated electronic systems
to drive the modulator, but the repetition rate and pulse duration of the laser are then
power-dependent. Q-switched fibre lasers can typically produce ns-µs pulses at kHz
repetition rates.

Time

Output
Power

Gain

Loss

Fig. 1.16: Illustration of passive Q-switching dynamics, showing the formation of pulses
by modulation of the cavity gain and loss.

Mode-Locking

Mode-locking establishes a fixed phase difference between longitudinal modes of the laser
cavity, creating periodic interference that produces a train of pulses. Numerous longi-
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tudinal modes exist within the gain bandwidth of a laser cavity and during continuous
wave operation, the modes oscillate independently so the beam intensity has a random
time dependence. By establishing a fixed phase relationship between adjacent cavity
modes, the electric field becomes a temporally periodic function, with a repetition period
corresponding to the cavity round trip time. If a large number of modes are locked with a
broad gain bandwidth, ultrashort sub-picosecond pulses can be generated.

Similar to Q-switching, mode-locking is achieved by inserting an optical loss modulator
into the cavity, which can be actively driven or a passive saturable absorber. Amplitude
modulation adds sidebands to each mode in the frequency domain, spaced apart by the
modulation frequency. If this modulation frequency is equal to the cavity-mode spacing,
coupling between the in-phase driven sidebands and the cavity modes will phase-lock
adjacent modes together.

Passive mode-locking with a saturable absorber can also be explained in the time
domain. As the pump power increases and light starts to resonate in the cavity, noise
fluctuations will result in intensity variations on the absorber. The nonlinear absorption
of the device results in preferential transmission of greater intensities, which therefore
experience greater gain and continue to grow. Over many cycles of the cavity, noise
fluctuations can build up into a pulse. The peak of the pulse saturates the absorber more
strongly than the pulse wings, resulting in temporal narrowing until an equilibrium
is established where the minimum pulse duration is set by the cavity gain bandwidth
(typically, this is less than the gain bandwidth of the active material alone due to spectrally-
dependent loss in other cavity components). Compared to Q-switched lasers, mode-
locked fibre lasers can produce ultrashort pulses (fs-ps durations) at repetition rates
corresponding to the cavity length (typically MHz). Further discussion of saturable
absorbers is presented in Chapter 4, where we study the nonlinear optical properties of
emerging few-layer transition metal dichalcogenides.

While mode-locking and Q-switching both depend on an intracavity modulator, the
tendency for a laser to operate in either regime depends on the cavity design and mod-
ulator properties. Additionally, the two mechanisms can occur simultaneously, known
as Q-switched mode-locking. This regime can be advantageous for delivering bursts of
high-energy ultrashort pulses, or considered an instability if a continuous train of mode
locked pulses (known as cw mode locking) is desired.

Gain Switching

Gain-switching produces short pulses by modulating the pump power to the active fibre,
which switches the gain on and off rapidly. There is a delay between the gain medium
being pumped and the onset of lasing while the spontaneously emitted light is amplified
by many round-trips of the cavity. This has the effect of storing gain in the gain medium. If
the pump power is switched off as lasing starts, then the stored energy can be extracted in
the form of a pulse shorter than the pump pulse, as shown in Fig. 1.18. The build-up time
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Fig. 1.17: Illustration of mode-locking dynamics: (a) steady-state evolution of power, loss
and gain; (b) initial growth of a pulse from noise.
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Fig. 1.18: Illustration of gain switching dynamics, showing the formation of pulses by
modulation of the pump power.
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and hence the required pump pulse duration can be reduced by using more intense pump
pulses. Therefore, providing the pump source can produce pulses with sufficient power,
the gain-switched laser can emit significantly shorter pulses. However, this setup requires
a separate technique for pulsing the pump light and the generated pulse durations are
typically > 100 ps.

1.6 Nanomaterials

Materials science is critically important to the development of optical technologies. Indeed,
advancements in understanding and fabrication of materials have underpinned many
of the major optical discoveries over the last century. Materials are typically used on
macroscopic length scales with millions of constituent atoms in their chemical structure.
In this case, the material properties are independent of size.

However, for the continued development of new and improved devices, there is great
interest in exploring new materials with novel and tunable properties. The development
of quantum mechanics over the the last century has provided theoretical tools to analyse
size-dependent behaviour on the nanoscale and researchers have considered how material
characteristics change towards quantum length scales. Many chemical structures with
well-known unit cells (for crystals, the unit cell describes the periodic atomic arrangement)
have been studied and new physical phenomena have emerged when moving from the
bulk to the nanoscale (where the atomic structure is unchanged but there are significantly
fewer unit cells making up the material).

The term nanomaterial was introduced in the 1970s to describe these low-dimensional
material structures with size-dependent properties. However, the optical applications of
nanoscale materials date back over a millennium. Most famously, the ‘Lycurgus Cup’ from
4th-century Rome exhibits direction-dependent colour due to a dichroic glass containing
gold and silver nanoparticles of only ∼70 nm diameter, and Medieval stain glass windows
routinely contained metal oxide nanoparticles to provide their rich vibrant colours [Col09].
While the science behind these phenomena was not likely understood at the time, one of
the first academic studies on nanomaterials was still published over 150 years ago when
Michael Faraday synthesised colloidal ‘ruby’ gold nanoparticles in 1857 [Far57].

More recently, the explosion of interest and rapid progress in nanoscience can be
attributed to the invention of high-resolution microscopy techniques to characterise and
advance our understanding of these structures. Reports of remarkable properties and the
potential for new photonic devices have also fuelled research in this field.

Briefly, nanomaterials can be categorised into zero-dimensional (0D), one-dimensional
(1D) and two-dimensional (2D) structures, where the number of dimensions refers to
macroscopic dimensions. Zero-dimensional nanomaterials include clusters of isolated
particles, such as buckminsterfullerene [Kro85] – for which the 1996 Nobel Prize in Physics
was awarded for its discovery. One-dimensional materials include tubes and fibres with
nanoscale (<100 nm) diameters, such as carbon nanotubes [Iij91]. Two-dimensional materi-
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als are flat sheets made up of a small number of layers of atoms, such as graphene [Nov04];
the experimental fabrication of this resulted in a second Nobel Prize in Physics (2010)
related to the field of nanomaterials.

To this day, ‘new’ nanomaterials are emerging by exfoliating few-layer forms of existing
materials and nanomaterial-enabled optical systems are beginning to transition from
laboratories to commercial products. In this thesis, we investigate the nonlinear optical
properties of few-layer transition metal dichalcogenides and exploit them as saturable
absorbers for short pulse generation in Chapter 4.

Zero-Dimensional One-Dimensional Two-Dimensional

Fig. 1.19: Illustration of atomic arrangements in 0D, 1D and 2D nanomaterials. All atoms
in these representations are identical, which is the case for carbon-based materials:
buckminsterfullerene, carbon nanotubes and graphene.

1.7 Summary

This chapter has outlined the major historical developments leading to the success of
fibre lasers today and introduced the main fundamental and technological concepts that
we use in this thesis. We discussed light guidance in optical fibres and reviewed the
linear and nonlinear phenomena which can be used to control the temporal and spectral
optical properties. Photonic crystal fibres and nanomaterials were introduced as versatile
platforms for exploiting nonlinear effects. We also briefly considered the underlying
technology of rare-earth-doped fibres and pulse generation techniques. As the following
chapters intend to demonstrate, nonlinearity can be a powerful tool in the development of
short-pulse fibre lasers.
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2
SIMULATION OF SHORT-PULSE FIBRE

LASERS

Fibre lasers offer vast design freedom. It is therefore desirable to develop models for
simulating laser behaviour to elucidate the influence of cavity design on the spectral and
temporal output properties. This can enable quicker experimentation than constructing a
system physically and can provide additional insight into intracavity pulse dynamics.

Models for light-matter interaction in optical components are typically derived from
Maxwell’s equations and fundamental quantum mechanics, and a trade-off exists between
model accuracy and the computational cost of finding solutions. Therefore, various
approaches for fibre laser simulations have been proposed in the literature, using different
assumptions to simplify the problem while retaining the core physics.

In this chapter, we adopt an experimentalist’s approach to short-pulse fibre laser simu-
lations, with an emphasis on numerically efficient algorithms that can be quickly and
conveniently solved on non-specialist hardware.1 In Section 2.1 we establish a mathemati-
cal representation for electromagnetic pulses and discuss how to interpret and visualise
their properties. The computation of propagation modes and the properties of step-index
fibres and photonic crystal fibres (PCFs) are examined in Section 2.2. Section 2.3 introduces
the Generalised Nonlinear Schrödinger Equation that can describe pulse propagation in
waveguides, including numerical treatment of the nonlinear fibre optics effects we intro-
duced in Chapter 1. Finally, models for rare-earth doped fibre amplifiers are considered in
Section 2.4, before all of these approaches are combined to present a complete simulation
of a mode-locked fibre soliton laser in Section 2.5.

1All numerical work in this thesis was implemented in Python (using the scientific computing library, SciPy)
and executed on an average-specification personal computer.
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Chapter 2 Simulation of Short-Pulse Fibre Lasers

2.1 Mathematical Description of Optical Pulses

An optical pulse can be fully described by its electric field, which is a real-valued function
of space and time: E(x, y, z, t). To simplify the mathematics, we introduce a complex-
valued ‘analytic signal’2 for the electric field E(x, y, z, t) which satisfies: E(x, y, z, t) =
1
2 [E(x, y, z, t) + c.c.] where c.c. denotes the complex conjugate. Further simplifications
can be made by treating the spatial (transverse mode) profile in the x− y plane separately
from temporal and spectral evolution in the direction of propagation z, assuming a fixed
linear polarisation state, and separating the field into a rapidly varying carrier wave that
is modulated by a pulse envelope. The electric field is thus defined as [Agr13, Tre00]:

E(x, y, z, t) = F(x, y) A(z, t) exp(−iω0t) (2.1.1)

where F(x, y) is the spatial light profile, A(z, t) is the envelope and ω0 is the reference
carrier angular frequency (often chosen to correspond to the central wavelength of the
pulse spectrum).

All spectral and temporal information about the pulse is contained in the envelope
function:

A(z, t) = |A(z, t)| exp[iφ(z, t)] (2.1.2)

where |A(z, t)| and φ(z, t) are the temporal amplitude and phase, respectively. The
envelope is normalised such that |A(z, t)|2 corresponds to the instantaneous optical power
in watts.

The pulse envelope in the frequency domain is related to the time-domain representa-
tion, A(z, t) by the Fourier transform F :

Ã(z, ω−ω0) = F [A(z, t)] (2.1.3)

=
∫ +∞

−∞
A(z, t) exp[i(ω−ω0)t] dt (2.1.4)

= |Ã(z, ω−ω0)| exp[iϕ(z, ω−ω0)] (2.1.5)

where |Ã(ω−ω0)| and ϕ(z, ω−ω0) are the spectral amplitude and phase of the pulse.3

These spectral quantities are shifted to a centre frequency of zero, since the carrier was
decoupled from the envelope. While it is preferable to visualise pulses in the time-
domain without a rapidly oscillating carrier components, we often choose to plot the
spectrum centred at the real wavelength for clarity. Mathematically, this corresponds
to the Fourier transform of the real electric field Ẽ(z, ω) rather than the complex field
envelope Ã(z, ω−ω0). This convention is widely adopted however and henceforth, we

2The analytic signal technique, first introduced by Gabor in 1946, is commonly used in oscillation theory to
define the amplitude, phase and frequency of a real-valued time function by using complex exponential
notation [Gab46].

3The tilde above a function indicates that it is the Fourier transform. Strictly, since the electric field is a
real-valued function, its Fourier transform contains both positive and negative frequencies, but we often
ignore the negative frequencies.
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2.1 Mathematical Description of Optical Pulses

use Ã(z, ω), |Ã(ω)| and ϕ(ω) to represent the spectral quantities of the pulse envelope,
shifted to the true frequency.

2.1.1 Numerical Representation

At any given position in z, the field envelope functions A(t) and Ã(ω) can be represented
digitally as one-dimensional arrays by approximating them onto a discrete grid of points.
The temporal grid is created with a sufficient time span T to contain the whole pulse enve-
lope (including any phase delays during propagation), and consisting of N = 2n evenly
spaced points (where n is an integer4), which correspond to samples taken at intervals
of ∆t = T/N. The spectral grid contains the same number of points, corresponding to
regular sampling at N frequency intervals ∆ f centred about zero, such that ∆ f = 1/T
and the maximum frequency is related to half the temporal point spacing according to the
Nyquist sampling theorem.

A continuous field is therefore represented on the numerical grid by sampling, storing
the amplitude and phase at every grid point as a complex value. The Fast Fourier Transform
(FFT) algorithm is used to switch between time and frequency domains. Careful selection
of the numerical grid is the first step in any simulation, since a trade-off exists between
computational cost and the accuracy of numerical representation of the field.

When considering propagation of a field envelope, we sample the evolution of the
field along z to build two-dimensional arrays in time A(z, t) and frequency Ã(z, ω).
For convenience and efficiency, we often let the numerical grid (which represents the
simulation window) travel at a velocity vg,window equal to the group velocity of the input
pulse (illustrated in Fig. 2.1).5 This corresponds to a coordinate transform from a laboratory
time frame t to the simulation window time frame t′.

t′ = t− z
vg,window

(2.1.6)

and is discussed further in the context of pulse propagation equations in Section 2.3.

2.1.2 Pulse Visualisation

A major benefit of numerical modelling is that the pulse A(z, t) can be fully known
at every position in the laser or along a length of fibre, offering not just the output
properties of a system, but a complete insight into the dynamic evolution of the pulse.
Such understanding of the dynamics may not even be possible from experimental studies,
since intracavity measurements would perturb the field.

4The number of grid points is chosen as a power of two since this is a condition under which the FFT is
particularly efficient and fast.

5However, for greater flexibility, it is possible to define a simulation grid which is not centred at the frequency
of the pulse and which travels at a group velocity corresponding to any carrier arbitrary frequency ωref.
This corresponds to replacing ω0 with the reference frequency ωref.
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t' = 0
(t = 0)

t'

z = 0 m

z

t' = 0
(t = 50 ns)

t'

z = 10 m

z

t' = 0
(t = 100 ns)

t'

z = 20 m

Simulation Window

Distance along
fibre, z

t  = laboratory time frame
t' = moving simulation time frame

Fig. 2.1: Illustration of simulation time grid in a travelling reference frame t′ along a fibre,
relative to the laboratory time frame t. Here, the simulation window propagates at the
group velocity of the pulse, fixing the pulse centre at t′ = 0 for all positions in the fibre.

The pulse shape is given by the intensity I(z, t) = |A(z, t)|2 [with units of watts, where
the power is distributed over the transverse mode profile described by F(x, y)] and the
spectral intensity is Sω(z, ω) = |Ã(z, ω)|2. To visualise the spectrum on a wavelength
axis, rather than a frequency axis, a scaling factor must be introduced such that the
integrated area under the spectrum remains constant: Sλ(z, λ) = Sω(z, 2πc/λ) 2πc

λ2 [Tre00].

The temporal phase can be extracted from the field by φ(z, t) = arctan
{

Im[A(z,t)]
Re[A(z,t)]

}
and

similarly for the spectral phase, ϕ(z, ω) = arctan
{

Im[Ã(z,ω)]
Re[Ã(z,ω)]

}
.

Additionally, it can be useful to compute the instantaneous angular frequency, given
by: ωinst(z, t) = ω0 +

dφ(z,t)
dt , to observe the distribution of frequency components within

the pulse shape. We refer to a change in instantaneous frequency with time as chirp, as
introduced in Section 1.3.3.

The spectral and temporal content of a pulse is perhaps visualised in a most complete
format by the spectrogram, computed by Fourier transforming small temporal sections of
the signal [section size defined by a Gaussian gate function g(t)] in turn to build up a
picture of the time-dependent spectrum.6 Mathematically, this corresponds to:

SGM(z, ω, t) =
∣∣∣∣∫ ∞

−∞
A(z, t)g(t− τ)exp(iωτ)dτ

∣∣∣∣2 (2.1.7)

These concepts are illustrated graphically in Fig. 2.2 for a linearly up-chirped pulse. The
spectrogram can be seen to clearly and compactly illustrate the distribution of spectral
content within the pulse envelope.

6This measurement can also be made experimentally using a cross-correlation frequency-resolved optical
gating (XFROG) technique [Tre00].
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Fig. 2.2: Visualisation of a linearly up-chirped sech pulse: (a) pulse profile, temporal
phase and chirp (instantaneous frequency); (b) optical spectrum and spectral phase; (c)
spectrogram, measured with a 2 ps width gate window.

2.2 Propagation Modes of Optical Fibres

Fibres can support a number of guided propagation modes (as introduced in Section 1.3),
which depend on the waveguide structure and optical frequency, with each propaga-
tion mode possessing distinct properties. Therefore, to determine fibre behaviour at a
given wavelength, it is necessary to compute the supported modes and their respective
characteristics, which we now summarise for both conventional step-index fibre and PCF.

2.2.1 Step-Index Fibre

Electric and magnetic fields are vector quantities, resulting in 6 separate field components
(Ex, Ey, Ez, Hx, Hy, Hz) which must each satisfy the Helmholtz wave equation (derived
from Maxwell’s equations) in homogeneous regions of constant refractive index (i.e. in
both the core and cladding) [Sny83]. Solutions of interest are restricted to those travelling
along the fibre axis z. Depending on the combination of field components, different types
of supported modes can be determined including transverse electric (TE), transverse
magnetic (TM) and hybrid (HE and EH) modes.7

For each type of mode, it is possible to form a characteristic eigenvalue equation by
enforcing continuity of the mode and its derivative across the core-cladding boundary.
The eigenvalue solutions are the propagation constants β for supported modes, and the

7TM and TE modes correspond to meridional rays travelling along the fibre axis while hybrid modes relate to
skew rays which follow a helical path along z without passing through the z axis. They are defined as TE
(Ez = 0, Hz 6= 0), TM (Ez 6= 0, Hz = 0), HE (Ez 6= 0, Hz 6= 0, Hz > Ez) and EH (Ez 6= 0, Hz 6= 0, Ez > Hz).
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Chapter 2 Simulation of Short-Pulse Fibre Lasers

eigenfunctions are the transverse mode profiles. To determine the optical properties of a
given mode, the eigenvalue β is computed across a range of wavelengths, describing the
frequency-dependent phase delay.

Fortunately, for most step-index fibres, the problem can be simplified using a weakly-
guiding approximation (ncore ≈ nclad) since the index difference ∆n between the core and
cladding is typically small [Glo71]. This assumes guided rays are approximately paraxial
with weak longitudinal field components, leading to identical continuity conditions for
electric and magnetic fields. Consequently, this becomes a scalar problem and the types of
fields can be neglected, yielding the following eigenvalue equation [Glo71]:

Jl−1(U)

Jl(U)
= −W

U
Kl−1(W)

Kl(W)
(2.2.1)

where U and W are dimensionless parameters, Jl is an ordinary Bessel function of the
first kind and K is a modified Bessel function of the second kind (the Bessel func-
tion order is indicated by the subscript l). The dimensionless parameters are defined

as the normalised core parameter U = a
√

k2
0n2

core − β2 and the normalised cladding

parameter W = a
√

β2 − k2
0n2

clad, in addition to the normalised waveguide parameter

V = a
√

k2
0n2

core − k2
0n2

clad such that V2 = U2 + W2, where k0 = 2π/λ is the free-space
wavenumber, a is the core radius and β is the propagation constant to be found.

Many solutions can exist to the eigenvalue equation (Eqn. 2.2.1): for a given l index
there will be m solutions, where each solution derived from this weakly guiding analysis is
known as a linearly polarised LPlm mode.8 9 Since the equation is transcendental, it can be
solved numerically by root-finding, using the known boundaries of the problem based on
Bessel function zeros to define a parameter range in which to search for a solution [Kaw01]:

LP01 mode : 0 ≤ U ≤ j0,1 (2.2.2a)

LP0m mode : j1,m−1 ≤ U ≤ j0,m for m ≥ 2 (2.2.2b)

LPlm mode : jl−1,m ≤ U ≤ jl,m for l ≥ 1, m ≥ 1 (2.2.2c)

where jl,m is the mth zero of the lth-order Bessel function of the first kind. When a mode
is unsupported by the fibre at a particular wavelength, no solution can be found in
the corresponding range. Practically, we implemented this procedure using a bounded
root-finding algorithm (using Brent’s method).

Once a solution U is found for a given mode, the propagation constant β is extracted.
Since this can be Taylor expanded (Eqn. 1.3.12) and written in terms of group velocity

8l and m are often denoted as the azimuthal and radial mode indices, respectively. Specifically, l is the
number of intensity maxima/minima within a full rotation in the plane of the mode and m is the number
of maxima/minima that occur when moving from the fibre centre outwards to infinity.

9It is also possible to identify the degenerate vector modes which comprise each LP mode. For instance,
LP01 is equivalent to HE11 and LP11 is a set of vector modes including TE01, TM01 and HE21.
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2.2 Propagation Modes of Optical Fibres

dispersion β2, third order dispersion β3 etc., values for βn at a given wavelength can be
obtained by differentiation:

βn(λ) =

(
dnβ

dωn

)
ω=2πc/λ

(2.2.3)

This is achieved numerically by fitting the computed array of β values across the trans-
parency window of silica with a polynomial, permitting facile differentiation.10

Modal intensity profiles are most conveniently defined in terms of radial r and azimuthal
φ cylindrical coordinates [Buc95]:

Ilm =I0 J2
l

(
Ur
a

)
cos2(lφ) r ≤ a (core) (2.2.4a)

Ilm =I0

(
Jl(U)

Kl(W)

)2

K2
l

(
Wr
a

)
cos2(lφ) r ≥ a (cladding) (2.2.4b)

where I0 is the peak intensity. The effective area Aeff and nonlinear parameter γ can then
be computed using Eqns. 1.3.18 and 1.3.19.

Finally, we note that fibres have two orthogonal polarisation axes, meaning that a
single LP mode includes a set of nondegenerate submodes (known as polarisation modes),
distinguished by the orientation of the electric field. Even slight birefringence in the
fibre from bends or manufacturing imperfections can yield small changes in the index of
each polarisation axis, giving different modal properties (this is the origin of polarisation
mode dispersion). However, we neglect this effect henceforth and consider only a single
polarisation mode propagating in fibre, as is the case for light launched along a principal
axes of polarisation-maintaining fibre.

Single-Mode Fibre for Yb-Doped Fibre Lasers

In this thesis, we regularly work at wavelengths within the ytterbium gain band and
IPG Flexcore is used as passive single-mode fibre (with step index profile ∆n∼0.006 and
core diameter dc∼5.3 µm, equivalent to the commercially available Corning Hi1060 fibre).
While Flexcore is single-moded at ∼1060 nm, multiple modes are supported at shorter
wavelengths. Our model calculates that LP01, LP11, LP21 and LP02 modes exist for light at
520 nm, with spatial distributions and dispersion curves as shown in Fig. 2.3.

The wavelength at which a mode ceases to be supported is known as the cut-off wave-
length and as the wavelength approaches this value, the dispersion curve varies substan-
tially and the effective area sharply increases, reducing the mode power within the core
(this is seen in Fig. 2.3 for LP21 and LP02, which both cut off at ∼580 nm.). Since single-
mode operation is desired for high beam quality in fibre lasers, the cut-off wavelength
for the LP11 mode is a particularly important parameter. At this cut-off, neff approaches

10The order of the polynomial n is determined by an optimised fitting, but limited to n < 8 since interpolation
with high-order polynomials can yield unphysical numerical artefacts [Run01].
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nclad (W → 0) and from Eqn. 2.2.2, it can be seen that this value corresponds to U = j0,1,
and thus the waveguide parameter V = j0,1 = 2.405. Finally, it should be noted that the
properties of manufactured fibres may vary slightly, thus the numerical models here are
intended for guidance purposes and the computed values will not be exact.
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Fig. 2.3: Modal properties for Flexcore fibre (step-index fibre with 5.3 µm core diameter
and ∆n=0.006): (a) spatial intensity profiles for guided modes at 520 nm; (b) dispersion
and (c) effective area within the guidance range of each mode. LPlm refers to a linearly
polarised mode with azimuthal mode index l and radial mode index m.

2.2.2 Photonic Crystal Fibre

One of the greatest strengths of PCF is the ability to possess a high index contrast between
the core and cladding region, to achieve strong waveguide effects. Unfortunately, this
limits the validity of a weakly guiding approximation, complicating the modal analy-
sis. While numerical methods such as finite element analysis have been demonstrated
to accurately determine PCF properties, these are typically slow and computationally
demanding [Zol05]. However, a good approximate model for PCFs can be obtained using
an effective index method, which generalises the analysis of step-index fibres to account for
the microstructured cladding [Bir97, Kni98].

The effective index model reduces a PCF structure to a step-index fibre with a solid
silica core where ncore = nsilica and a cladding where nclad is computed as the effective
index of the fundamental mode that could exist in an infinite periodic lattice with the
same microstructure as the PCF cladding (known as the fundamental space filling mode,
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Cladding structure
unit cell

Solid-Core PCF

=

=

(computed as effective index
of microstructure space-filling mode)

Equivalent Step Index Fibre(a)

(b)

Air Hole

Circular approximation
to hexagonal unit cell

Fig. 2.4: Illustration of PCF modelling method: (a) the structure is treated as a step-index
fibre with core diameter related to the air hole pitch, core index equal to the index of
silica and cladding index computed as the effective index of the space-filling mode for
the microstructure; (b) circular unit cell approximation for calculating the space-filling
mode of the microstructure. R and ρ are scaling factors, described in the main text.

FSM). This is illustrated in Fig. 2.4a. Computation of PCF properties is therefore a two-
step problem: first, the fundamental space filling mode for the microstructured cladding
is found to determine nclad; second, the mode propagation constant is found for the
equivalent step-index fibre [Kni96].

As the weakly guiding assumption cannot be used here, a vector analysis is required,
distinguishing between different types of modes as discussed earlier. The fundamental
mode of the microstructured cladding will have the same symmetry as the photonic crystal
and is thus computed within a unit cell of the structure centred on an air hole [Bir97, Li04,
Mid00]. This is simplified by approximating the hexagonal cell as a circle with diameter
2RΛ where Λ is the hole pitch and R is a scaling factor (Fig. 2.4b). R is commonly

accepted as R = 0.5 [Mid00] or R =
√
(
√

3)/(2π) [Li06] in the literature; we find better
agreement with experiments using the latter. A full derivation of the eigenvalue equation
for the microstructured cladding’s space filling mode (i.e. the fundamental HE11 mode) is
presented in Refs. [Mid00, Li06]; here, we quote the result which we then solve (to find
nFSM) by numerical root finding:

(
P′1(gah)

gahP1(gah)
+

I′1( f ah)

f ah I1( f ah)

)(
n2

silicaP′1(gah)

gahP1(gah)
+

n2
air I′1( f ah)

f ah I1( f ah)

)

=

(
1

(gah)2 +
1

( f ah)2

)2

n2
FSM

(2.2.5)
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where g =
√

k2
0n2

silica − k2
0n2

FSM, f =
√

k2
0n2

FSM − k2
0n2

air, ah is half the air hole diameter, I1 is
a modified Bessel function of the first kind and order 1, primes denote differentiation with
respect to the argument and:

P1(gah) = J1(gah)Y1(gR)−Y1(gah)J1(gR) (2.2.6)

where Y1 is a Bessel function of the second kind and order 1.

Finally, we find the fundamental mode for the PCF as the HE11 mode of the equivalent
step-index fibre with core diameter dc = 2ρΛ, where ρ is a scaling factor. Values of
ρ = 0.625 [Bir99] and ρ = 1/

√
3 [Kos04] have been proposed; we observe the former to

yield better accuracy. The HE11 eigenvalue equation, to be solved (for β) by root-finding,
is [Li04, Sny83]:

(
J′1(U)

UJ1(U)
+

K′1(W)

WK1(W)

)(
n2

core J′1(U)

UJ1(U)
+

n2
cladK′1(W)

WK1(W)

)
=

(
1

U2 +
1

W2

)2 (β

k

)2

(2.2.7)

where U and W are defined as in Section 2.2.1, but with ncore = nsilica, nclad = nFSM and
effective core radius a = 0.5dc = ρΛ.11

The computed mode profile for a PCF with Λ = 3.2 µm and d = 1.6 µm is shown in
Fig. 2.5a, in addition to an indication of the core size for the equivalent step index fibre
(black dashed line). A limitation of this method is that the mode profile is uniform in
the cladding, when in reality the field will be more concentrated in the silica bridges
and not in the air holes. Therefore, to gain insight into the exact mode shape, more
complicated modelling techniques are required, as we discuss in Section 5.2.4 in the
context of acousto-optic interactions in PCF. However, this vector analytical effective
index method can accurately predict the dispersion of PCF structures [Li08] and is used
in Section 3.4.3 for modelling supercontinuum generation in PCF. As an example, we
compute the dispersion for a 3.2 µm pitch PCF while considering the impact of varying
the air hole size (Fig. 2.5b). With increasing air hole size, the effective index contrast
becomes greater, providing stronger anomalous waveguide dispersion. This shifts the
zero-dispersion wavelength (ZDW) towards shorter wavelengths. From the large coloured
region in Fig. 2.5b, it can be seen that PCFs offer great flexibility, allowing dispersion to be
controlled over a wide parameter range by changing the microstructure geometry.

11During the writing of this thesis, we became aware of empirically-derived expressions proposed by Saitoh
and Koshiba [Sai05] as an alternative method for determining the propagation constant of PCF modes.
These expressions give excellent accuracy over a wide parameter range (failing, however, for very small
pitch values and large d/Λ ratios). While these empirical equations were not employed in this thesis, our
preliminary investigations found that they could be evaluated more quickly and conveniently than the
root finding approach we have just outlined, while returning similar results. Therefore, since the aim of
this chapter is to introduce accurate and efficient modelling techniques, we feel that this work deserves
mention and will be considered further for future simulations.
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Fig. 2.5: Simulated properties of PCFs with Λ = 3.2 µm : (a) mode intensity profile
when d = 1.6 µm where the dotted line is the effective core diameter for the equivalent
step-index fibre; (b) dispersion curves as d/Λ varies from 0.2 to 0.8.

2.3 Pulse Propagation using a Generalised Nonlinear
Schrödinger Equation

The nonlinear Schrödinger equation (NLSE) is a nonlinear partial differential equation for
describing wave propagation in nonlinear medium.12 Different variations of the equation
have been applied in numerous distinct fields, including fluids [Zak68], Bose-Einstein
condensates [Rup95] and notably for this work, to accurately predict the propagation of
light in optical fibre [Has73a]. The celebrated formulation of the NLSE to describe the
evolution of a time-domain pulse envelope A(z, t) in fibre (in one time dimension t and
one spatial dimension along the fibre axis z) including only the effects of group velocity
dispersion β2 and Kerr nonlinearity is:

∂A
∂z

= −i
β2

2
∂2A
∂t2 + iγ|A(z, t)|2A(z, t) (2.3.1)

This form of the equation is integrable, and its solutions (obtained via an inverse scattering
transform [Zak72]) are solitons (discussed in Section 1.3.4).

For a more complete description of nonlinear fibre optics, however, higher-order effects
must be considered. Notable contributions from Kodama and Hasegawa [Kod87], Blow
and Wood [Blo89] and Mamyshev and Chernikov [Mam90] derived an extended or gener-
alised NLSE (GNLSE) by including a nonlinear polarisation term in Maxwell’s equations.
The GNLSE can be formulated in either the time domain or frequency domain, although
the frequency-domain equation more naturally allows for the inclusion of wavelength-

12Its name derives from the similarity in appearance to the well-known Schrödinger equation in quantum
mechanics.
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dependent loss, nonlinearity and effective area [Fra91].13 It is this formulation that we
have adopted in this thesis to describe the pulse envelope:

∂Ã(z, ω)

∂z
=

g(ω)− α(ω)

2
Ã(z, ω)︸ ︷︷ ︸

Gain/Loss

+ i[β(ω)− β(ω0)− β1(ω0)(ω−ω0)]Ã(z, ω)︸ ︷︷ ︸
Dispersion (in co-moving frame)

+

iγ(ω)

[
1 +

ω−ω0

ω0

]
︸ ︷︷ ︸

Self-Steepening

×F

A(z, t′)

(1− fr)|A(z, t′)|2︸ ︷︷ ︸
Kerr

+ fr

∫ +∞

−∞
hR(T′)|A(z, t′ − T′)|2dT′︸ ︷︷ ︸

Raman





(2.3.2)

where g(ω) and α(ω) are the gain and attenuation coefficients respectively, fr is the
fractional Raman contribution and hR(t) is the Raman impulse response.

The validity of Eqn. 2.3.2 is based on the following assumptions:14

• All electric fields are linearly polarised in the same direction.

• Only one transverse mode exists in the fibre.

• Unidirectional propagation; any backwards propagating waves (e.g. from Brillouin
scattering) are neglected.

• Weak nonlinearity, such that the nonlinear change in refractive index is much less
than the linear index.

• Negligible third-harmonic generation.

Many of these assumptions can be relaxed by adopting more complex variations of the
GNLSE and including correction terms, although these cases are beyond the scope of
the experiments in this thesis. Additionally, theoretical work continues to this day to
expand the validity of such numerical modelling techniques, providing insight into new
parameter ranges and ‘extreme’ nonlinear optical phenomena [Con13, Tan14, Kol14].

The significance of each term in Eqn. 2.3.2 is discussed in the following subsections,
complementing the more verbose discussion of the physical implications of these effects
on the pulse shape and spectrum in Section 1.3.

13In addition to the original references we have mentioned, many excellent monographs exist on this topic,
summarising derivations and verifying the accuracy of simplified equations under various assumptions,
such as Refs. [Gen07, Dud10, Cou11, Agr13, Lav15].

14A common misconception is assuming that a slowly varying envelope is required for the GNLSE. Numerous
studies have shown, however, that this equation (which is also often referred to as a generic nonlinear
envelope equation) remains valid down to few-cycle pulses [Bra97, Gen07].
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2.3 Pulse Propagation using a Generalised Nonlinear Schrödinger Equation

2.3.1 Linear Effects

Gain and Loss

Light propagating along a fibre may experience gain, in the case of an active fibre (de-
scribed in Section 2.4), or loss due to absorption and scattering. In simulations, g(ω) and
α(ω) are arrays of values based on the same numerical grid as the field, thus including
the spectral dependence.

There are numerous sources of loss in a fibre, as introduced and shown visually in
Fig. 1.6 in Section 1.3.3. The total attenuation is found by summing the independent
contributions including Rayleigh scattering, UV absorption, IR absorption and impurity
absorption [Wal86]:

α(λ) =
Arayleigh

λ4 + Auv exp
(

Buv

λ

)
+ Air exp

(
−Bir

λ

)
+ αimp (2.3.3)

where Arayleigh, Auv, Buv, Air and Bir are magnitude and shape coefficients for each term
and αimp is the combined loss from impurities. The dominant impurity losses are from
OH absorption at 1240 nm and 1384 nm, which can be modelled by a superposition of i
Gaussian profiles:

αimp = ∑
i

Ai exp
[
−(λ− λi)

2

2σ2
i

]
(2.3.4)

where each Gaussian term has peak amplitude Ai, centre wavelength λi and width
σi. Different coefficients for the above expressions have been presented in literature,
depending on the structure and material of the fibre; here, we follow the single-mode
fibre model of Ref. [Wal86] and adjust the amplitude of the water peak to match datasheet
values. Finally, we note that fibre loss is commonly specified in units of dB km−1, requiring
a conversion to units of m−1: α [m−1] = α [dB km−1]× 10−4/ log10 e.

Dispersion

Dispersion is included through the propagation constant β, which is computed for the
fibre at every frequency in the numerical grid (as in Section 2.2).

We keep the pulse centred in our simulation window using a coordinate transform
(Eqn. 2.1.6) where vg,window = 1/β1(ω0). In the frequency domain, this is equivalent to
subtracting β1(ω0)(ω−ω0) from β, including a frequency shift by the reference frequency.
We also subtract off β(ω0) to measure the propagation constant relative to the value at the
reference frequency.

As an aside, we note that if only the group velocity dispersion β2 (and possibly higher
order dispersion coefficients) is known at a particular reference frequency ωref (e.g. from a
datasheet, when there is insufficient information to compute the full propagation constant
at every wavelength), this can be included instead by replacing the β(ω) − β(ω0) −
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Chapter 2 Simulation of Short-Pulse Fibre Lasers

β1(ω0)(ω−ω0) term in Eqn. 2.3.2 with:

βwindow = ∑
m≥2

βm

m!
1

(ω−ωref)m (2.3.5)

which follows from the Taylor expansion of the propagation constant (Eqn. 1.3.12) without
including the phase offset (β0) or group velocity term (β1).

2.3.2 Nonlinear Effects

While Eqn. 2.3.2 is formulated in the frequency domain, computation of nonlinear effects
requires the time-domain envelope to be used to determine intensities. Nonlinear po-
larisation is divided into an instantaneous Kerr term (electronic) and a delayed Raman
response (vibrational), which are treated separately and weighted by the fractional Raman
contribution factor fr. For silica fibres, a value of fr = 0.18 is typically used [Sto89].

Kerr Nonlinearity

The Kerr effect is assumed to be instantaneous and is included in the GNLSE in the same
manner as in the basic NLSE: related to γ(ω)|A(z, t)|2A(z, t). The frequency-dependence
of the nonlinearity, due to the increased effective area at longer wavelengths, is intrinsically
included by computing the array of γ(ω) values from the effective areas Aeff(ω) that are
obtained by integrating over the modal profiles (as discussed in Section 2.2) at every
wavelength in the grid.

Self-Steepening

A consequence of the instantaneous Kerr effect (causing a change in the refractive index)
is that the group velocity also becomes intensity dependent. The effect can be important
for ultrashort pulses where the pulse peak experiences a higher refractive index than the
wings and thus a greater delay, pushing the peak towards the trailing edge. This causes a
self-induced steepening of the trailing edge [Agr13].

Self-steepening can lead to an optical shock (similar to acoustic shocks observed on
the leading edge of sound waves) and interplay with group velocity dispersion can
result in optical wave breaking, distorting the pulse shape and spectrum [Tom85]. To
include self-steepening in the GNLSE, a correction factor ω−ω0

ω0
is included in the nonlinear

term [Lav15].

Stimulated Raman Scattering

The Raman term in Eqn. 2.3.2 is a time-domain convolution integral between the pulse
envelope intensity and the Raman impulse response function hR, which accounts for the
delayed (non-instantaneous) nature of the effect. This can be efficiently evaluated in the
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2.3 Pulse Propagation using a Generalised Nonlinear Schrödinger Equation

frequency domain, where convolution operations become products:

∫ +∞

−∞
hR(T′)|A(z, t′ − T′)|2dT′ = F−1[F (|A(z, t′)|2)× hR(ω)] (2.3.6)

The delayed Raman response hR(t), from which hR(ω) is found via the FFT, can
be described simply by a single damped harmonic oscillation with a Lorentzian line-
shape [Blo89]. However, for a negligibly increased computational cost, a more accurate
intermediate-broadening model can be used based on multiple vibrational modes with line-
shapes given by the convolution of a Gaussian and Lorentzian [Hol02]:

hR(t) = ∑
i

Mi

ωi
exp(−γit) exp

(
−

Γ2
i t2

4

)
sin(ωit)H(t) (2.3.7)

where for the ith vibrational mode, Mi is the amplitude, ωi is the central frequency, γi is
the Lorentzian linewidth, Γi is the Gaussian linewidth and H(t) is a unit step function.
Coefficients for the silica vibrational modes are given in Ref. [Hol02], resulting in the time
and frequency responses shown in Fig. 2.6, where the imaginary part of the spectrum
corresponds to the well-known Raman gain curve.
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Fig. 2.6: Delayed Raman response in silica, computed using an intermediate-broadening
model [Hol02]: (a) impulse response hR(t); (b) spectral profile hR(ω).

2.3.3 Numerical Solution

Numerical Integration

Traditionally, the GNLSE is solved using a pseudospectral split-step method where the non-
linear and dispersive terms are integrated separately, one after the other, within a single ∆z
interval [Har73]. For our work, we adopted a similar, but augmented approach by trans-
forming the problem into an interaction picture15, which decouples the linear and nonlinear

15The name and concept of this method derive from quantum mechanics, where different representations or
‘pictures’ of problems are often chosen to provide physical insight and to simplify calculations.
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Chapter 2 Simulation of Short-Pulse Fibre Lasers

terms by a change of unknown variable and removes the stiff dispersive part [Hul07].
This technique, initially pioneered for the study of Bose-Einstein condensates [CD00],
has recently been applied to pulse propagation in fibre, enabling greater accuracy and
efficiency than conventional split-step methods [Hul07].

Briefly, the GNLSE (Eqn. 2.3.2) can be expressed in terms of a linear operator L̂ and a
nonlinear operator N̂:16

∂Ã
∂z

= L̂Ã + N̂(Ã) (2.3.8)

where:
L̂ =

g(ω)− α(ω)

2
+ i[β(ω)− β(ω0)− β1(ω0)(ω−ω0)] (2.3.9)

and

N̂(Ã) = N̂[F (A)] =iγ(ω)

(
1 +

ω−ω0

ω0

)
×F (A(z, t′)×

{(1− fr)|A(z, t′)|2 + frF−1[F (|A(z, t′)|2)× hR(ω)]})
(2.3.10)

To move into the interaction picture, we use the transformation:

ÃIP = Ã exp(−zL̂) (2.3.11)

which is inserted into Eqn. 2.3.8 to yield:

∂ÃIP

∂z
= exp(−zL̂)N̂[exp(zL̂)(ÃIP)] = exp(−zL̂)N̂(Ã) (2.3.12)

Eqn. 2.3.12 can now be efficiently solved using conventional numerical integration rou-
tines, such as Runge-Kutta schemes which are included with most popular programming
languages. Mathematically, numerical integration is achieved by splitting the interval (i.e.
from z = 0 to z = fibre length) into many steps over which to propagate, starting from an
initial condition Ã(z = 0, ω). Simulation accuracy is determined by the step size ∆z, and
while smaller steps reduce the error, they increase the computation time. Additionally,
the required step size to achieve a particular error tolerance depends on the simulation:
generally, the more complex the pulse evolution dynamics, the smaller the required step
size. Therefore, an adaptive algorithm is required to efficiently control the step size.

Adaptive Step Size Control

While generic integrators may offer built-in adaptive stepping to achieve a particular local
error, it is more flexible to manually implement this with knowledge of the particular prob-
lem (the fourth-order Runge-Kutta in the interaction picture method (RK4-IP), proposed
by Johan Hult, is particularly popular here [Hul07]).

16Our definitions of operators apply for the frequency-domain GNLSE formulation and thus differ from
those originally presented in Ref. [Hul07] for use with the time-domain GNLSE.
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2.4 Rare-Earth Doped Fibre Amplifiers

A step-doubling algorithm is often used for this purpose: two small steps and an equiva-
lent large step are taken from each point, with the difference in outcome indicating the
local error [Sin03]. If the error is above a given tolerance, the last step is discarded, the
step size is halved and the simulation continues from the last acceptable step (if, how-
ever, the error is much smaller than permitted, the step size is increased to speed-up the
computation).

However, this approach requires that multiple steps are computed for each integration
step to achieve error control, which amounts to additional computational cost. It would
therefore be advantageous to obtain an estimate of the local error directly within each
integration step, such as using an embedded Runge-Kutta integration algorithm. Fortu-
nately, Balac and Mahé have recently applied this technique to the GNLSE [Bal13]. Their
embedded Runge-Kutta scheme with orders 3 and 4, applied in the interaction picture
(ERK4(3)-IP) provides a local error estimation for each step with no significant additional
processing, enabling efficient step size control. This adaptive integration technique was
used for all GNLSE simulations in this thesis. For brevity, we omit here the full details of
this algorithm and refer the numerically-minded reader to Ref. [Bal13] (particularly Eqns.
23 & 27).

2.3.4 Modelling Noise

Many processes in nonlinear optics are seeded by noise, necessitating the inclusion of
shot noise (i.e. quantum noise related to the discrete nature of photons) to build a reliable
numerical model. We implement this with a semiclassical one photon per mode model: prior
to running a simulation, at every point in the numerically gridded spectral representation
of the input electric field, a photon is added with a random phase [Pas04, Dru01].

In the time domain, this corresponds to a noise field modelled as random samples from
a complex Gaussian distribution with zero mean and a variance given by [Pas04]:

σ2 =
h̄ω

2∆t
(2.3.13)

where h̄ is the reduced Planck constant and ∆t is the temporal resolution of the numerical
grid.

2.4 Rare-Earth Doped Fibre Amplifiers

To model optical propagation along active fibres (i.e. amplification), it is necessary to
compute the gain coefficients g(ω) along z from consideration of stimulated emission and
energy transitions within the rare-earth atomic system. In the simplest implementation,
the gain of a doped fibre amplifier can be modelled using a parabolic gain profile in the
spectral domain (with central wavelength and bandwidth determined by the active ion)
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with instantaneous gain saturation included through a two-level model:

g =
g0

1 + E/Esat
(2.4.1)

where g0 is the small signal gain, E is the input pulse energy and Esat is the amplifier
saturation energy [Die06].

However, this approach is difficult to relate to experimental parameters and neglects the
detailed spectral profile of the active ion, which can be important for shaping ultrashort
pulses. Therefore, in this section we describe an improved model for rare-earth doped
fibre amplifiers. We focus specifically on ytterbium-doped fibre, since this is the main laser
ion employed in this thesis, but the approach could be applied generally to other dopants.
We begin with a brief review of the spectroscopy of ytterbium, followed by discussion of
Yb:fibre modelling.

2.4.1 Spectroscopy of Ytterbium

Trivalent ytterbium Yb3+ has a relatively simple energy structure consisting of only two
manifolds: ground 2F7/2 and excited 2F5/2, split into 4 and 3 Stark levels, respectively
(Fig. 2.7a). As with all trivalent rare-earth ions, the electronic transitions are shielded from
the host material, resulting in only a weak influence of the host lattice on the emission and
absorption cross sections [Dig01]. Therefore, the following discussion will be generally
applicable to various host materials, although where spectroscopic data is required, we
use measurements from Yb3+ in germanosilicate glass, obtained from Ref. [Pas95].

Effective absorption and emission cross sections are shown in Fig. 2.7b, where the
characteristic features can be related to the energy level structure.17 In terms of absorption,
the dominant peak at ∼975 nm corresponds to excitation between the lowest Stark levels
in each manifold and the second peak at ∼910 nm is related to transitions from the lowest
ground level to higher Stark levels in the excited manifold. A small absorption plateau
beyond 975 nm exists from transitions starting in the second-to-bottom Stark level in the
ground manifold (notably, this can cause reabsorption of light emitted here and a shift
to longer laser wavelengths with long lengths of doped fibre). The cross section of this
transition is low since the occupation of Stark levels follows a Boltzmann distribution:
the population of second Stark level in the 2F7/2 manifold is only 6% of the lowest Stark
level [Pas95].

Considering the emission cross section, the dominant laser transition is at ∼975 nm
(this is only accessible when pumped with light shorter than this wavelength) between
the lowest 2F5/2 manifold level and the ground level. This corresponds to three-level
laser behaviour. Laser action is also possible from the lowest 2F5/2 manifold level to

17Every Yb3+ ion within the amorphous glass host has a distinct absorption and emission cross section, which
will differ slightly due to the weak influence of the local environment. The presented measurements are
therefore an average over a large ion population, also taking into account level occupation probabilities,
giving broad features and preventing the individual Stark-split levels from being resolved. Hence, they
are described as effective cross sections [Pas08].
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Fig. 2.7: Spectroscopy of Yb3+: (a) energy level structure showing two manifolds, each
with numerous Stark levels, highlighting salient transitions; (b) effective absorption and
emission cross sections of Yb3+ in a germanosilicate host. Adapted from Ref. [Pas95].

the upper Stark levels in the ground manifold, corresponding to the emission cross-
section peak at ∼1035 nm and at longer wavelengths ∼1087 nm and ∼1140 nm. Due
to the energy separation between the transition-terminating level in the 2F7/2 manifold
and the lowest Stark level, four-level laser behaviour is observed by moving to longer
wavelengths [Pas97].

In this thesis, double-clad Yb-doped fibre amplifiers were used extensively, which
were often commercial units from IPG Photonics. We used multimode InGaAs laser
diodes to pump at the strongest absorption transition and typically achieved lasing at
∼1030-1070 nm.

2.4.2 Modelling Pulse Amplification

Analysis of amplification in active media usually begins with rate equations: differential
equations expressing the temporal evolution of the electronic level populations, dependent
on the local field intensity, and coupled by spectrally-dependent effective absorption and
emission cross sections. Due to near-instantaneous non-radiative (phonon-mediated)
transitions between Stark levels within each manifold, we can consider the population of
whole manifolds (neglecting relative occupancy of sub-levels), leaving just two coupled
ordinary differential rate equations for Yb3+. Steady-state populations are determined at
a given distance along the fibre z by equating time derivatives to zero. The use of a steady-
state analysis could be questioned for modelling pulse amplification where the intensity
varies over the duration of the pulses. However, such time scales are negligible compared
to the ∼1 ms upper state lifetime, enabling gain g(ω) to be calculated by treating the
signal as continuous wave (CW) light with an equivalent average power Pav. Differential
gain equations can be derived and then included as g(ω) in Eqn. 2.3.2 for solution using
numerical integration methods [Pas97, Bai14].

However, this additional term adds significant complexity and computational cost to
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the required numerical integration. Fortunately, a simplification was proposed by Barnard
et al. by ignoring the effect of amplified spontaneous emission (ASE) (this is valid providing
the peak gain is not extremely high) to find analytical solutions for the gain [Bar94].

In this method, the evolution of co-propagating pump power Pp and signal power Ps

are described by coupled transcendental equations [Bar94]:

Pp(z) = Pp,in exp

(
−αpz +

Pp,in − Pp(z)
PIS

p
+

Ps,in − Ps(z)
PCS

p

)
(2.4.2a)

Ps(z) = Ps,in exp
(
−αsz +

Ps,in − Ps(z)
PIS

s
+

Pp,in − Pp(z)
PCS

s

)
(2.4.2b)

where subscripts p and s denote quantities at pump and signal wavelengths, Pin is the
input (z = 0) power, α is the absorption per unit length, PIS is the intrinsic saturation
power coefficient characterising how the pump/signal saturates its own absorption and
PCS is the cross saturation coefficient describing the saturation of pump (signal) absorption
by signal (pump) light. The intrinsic saturation and cross saturation parameters can be
measured in transmission experiments, or computed using standard spectroscopic data
and measured / manufacturer-provided active fibre absorption, core size and length
values (we often chose the latter for simplicity), as described in full in Ref. [Bar94].

Monochromatic signal and pump waves are assumed and the spectral profile of the gain
gp(ω) is applied separately to the calculation of its value gm(z, Pav): net gain coefficient
g(z, ω, Pav) = gm(z, Pav)gp(ω) [Run14]. The gain magnitude is [Bar94]:

gm(z, Pav) =
1

Ps(z)
dPs(z)

dz
=

Pp(z)αpPIS
p

PCS
s [PIS

p + Pp(z)]
− αs (2.4.3)

and the spectral profile gp(ω) is computed as the effective emission cross section minus
the absorption cross section, normalised to one at the signal wavelength used for gain
magnitude calculations [Run14].

This method was implemented in our model as follows. We assumed that any changes in
pulse shape along the active fibre did not affect the gain (i.e. neglecting spectral changes).
This enabled the smoothly varying gain coefficients along the entire active fibre to be
precomputed using only ∼100 samples and the known input field, which greatly reduced
the required computation compared to solving Eqns 2.4.2 and 2.4.3 for every step in the
GNLSE propagator.

To compute the gain coefficient at one of the sampled z positions: Pp,in was the user-
chosen amplifier pump power and Ps,in was calculated as the average pulse input power
in a laboratory reference frame (not average power in the simulation window), obtained as
the energy in the simulation frame (

∫
time window |A(z, t)|2dt) multiplied by the repetition

rate of the laser pulses being amplified. Eqns. 2.4.2 were then solved for Pp(z) and
Ps(z) at a given z position by two-dimensional root finding (we used the Levenberg-
Marquardt method), followed by insertion of these values into Eqn. 2.4.3 to find the
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gain magnitude. Finally, the net gain coefficient was obtained by including the spectral
response (implemented using a sum of Gaussians fitting to the transition cross section
data in Fig. 2.7b), forming an array of gain values at each wavelength within the numerical
grid.

Once the gain arrays had been computed at ∼100 positions from z = 0 to the end of
the active fibre, they were fitted with a spline, enabling interpolation within the GNLSE
propagator (Eqn. 2.3.2) at any position z. Thus, g(ω) was able to be included in Eqn. 2.3.2
at any z position as a one-dimensional array and the efficient interaction-picture numerical
integration technique could still be used, yielding quick and accurate solutions.

2.5 Complete Model of a Mode-Locked Soliton Laser

To conclude our chapter on modelling methods, we combine the aforementioned ap-
proaches into a complete model for simulating a mode-locked fibre laser, which is com-
pared to an experimental realisation of the system.

2.5.1 Laser Design

A Yb:fibre ring cavity design with net anomalous dispersion (Fig. 2.8) was chosen since
this type of cavity is well understood and widely reported experimentally in the literature
(e.g. Ref. [Agr01] and references therein). The ytterbium-doped fibre amplifier included
a 0.8 m length of active fibre, pumped by a 962 nm laser diode and all passive cavity
fibre was IPG Flexcore, as described in earlier sections of this chapter. The total cavity
length was ∼20 m. Within the ytterbium gain band, silica fibre is normally dispersive;
therefore, we included a chirped fibre Bragg grating (CFBG) in the laser (with a three-port
circulator) to shift the net cavity dispersion into the anomalous regime. We present a
thorough discussion of CFBGs and their impact on pulse shaping in Chapter 3. Here,
however, we approximated the CFBG and circulator arrangement as a short length of
fibre to introduce the equivalent dispersion into the cavity and a Gaussian filter with the
equivalent bandwidth. To initiate mode-locking, intensity discrimination was provided by
a fast saturable absorber (experimentally, this was a carbon nanotube saturable absorber,
as discussed in Chapter 3), modelled phenomenologically as an instantaneous two-level
intensity-dependent absorption [Gar00]:

α(I, t) =
αs

1 + I(t)/Isat
+ αns (2.5.1)

where αs is the saturable loss, αns is the non-saturable loss, I(t) is the simulation field
intensity and Isat is the saturation intensity.

A shot noise field was created to seed the simulation, which was propagated through
each cavity element in turn. The final output coupler component stored 30% of the field
as the cavity output and fed back 70% of the light. The simulation continued over many
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cavity round trips until a convergence criteria (< 1% change in pulse duration and spectral
width over continuous iterations) was met.

Saturable 
Absorber

30% Output
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Ytterbium-Doped
Fibre
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OutputWDM
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Diode

WDM
1

2
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Fig. 2.8: Schematic of soliton mode-locked Yb:fibre laser. For the simulation, all fibre was
assumed to be polarisation maintaining. Experimentally, non-polarisation-maintaining
fibre was used, with the addition of a polarisation controller in the feedback loop to
enable manual optimisation of mode-locking.

2.5.2 Simulation Results

The simulation was run numerous times with different random shot noise seed fields,
always converging to the same steady-state solution18 – this confirmed that the state was
an attractor and represented the expected output characteristics for each pulse in the pulse
train from a physical mode-locked system.

The temporal evolution of the field (measured at the output port each round trip) is
shown in Fig. 2.9, growing from shot noise into a stable pulse. We note that while the pulse
forms at a random temporal position within the simulation grid due to noise, for clarity
we have presented all temporal representations of the field shifted such that the steady-
state pulse is centred on zero. The simulated laser spectrum had a central wavelength
of 1068 nm, with 0.56 nm FWHM (Fig. 2.10a). Experimentally, we measured ultrashort
pulses with an autocorrelator; therefore, the autocorrelation of the simulated pulse field is
shown in Fig. 2.10b, in addition to the original pulse envelope in Fig. 2.10c. The modelled
pulse duration was 3.4 ps, and a small down-chirp was observed across the pulse (shown
more clearly in the spectrogram in Fig. 2.10d), suggesting that the pulse duration could be
reduced with dispersion management.

Spectral sidebands were also observed, related to solitonic pulse shaping effects (in-
troduced in Section 1.3.4). While ‘true’ solitons (in the mathematical sense) can only
propagate in lossless (i.e. conservative) media, soliton shaping can still be present in
a laser cavity (a dissipative system) with net anomalous dispersion to compensate the
nonlinear phase accumulation on each round-trip.

Amplification, loss and changes in fibre dispersion/nonlinearity act as periodic per-
turbations every round-trip, suggesting a continuous variation in the required pulse
properties to maintain a fundamental soliton, according to the relationship between fibre

18Simulation time was typically less than one minute (executed on an average-specification personal com-
puter).
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Fig. 2.10: Simulation of mode-locked Yb:fibre laser: (a) optical spectrum; (b) autocorrela-
tion trace; (c) pulse envelope and chirp; (d) spectrogram.
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Chapter 2 Simulation of Short-Pulse Fibre Lasers

properties and the soliton power and duration (Eqn. 1.3.20). If the length scale of distur-
bances (in this case, the cavity length) is significantly shorter than the characteristic soliton
length (Eqn. 1.3.21), stable soliton propagation is possible with equivalent peak power to
the averaged pulse peak power over the cavity, known as guiding-centre solitons [Has90] or
average solitons [Kel91]. When the cavity length exceeds the soliton period, disturbances are
no longer averaged out and the pulse adjusts itself during propagation to remain as a fun-
damental soliton by shedding radiation into a dispersive wave. At certain wavelengths the
soliton and dispersive wave are phase matched, allowing energy coupling between them
and giving rise to resonant sidebands in the optical spectrum [Mol86, Kel92b, Den94].

In our laser, the soliton period z0 was ∼5 m, which is shorter than the 20 m cavity
length, explaining the observation of spectral sidebands. The presence of strong sidebands
was actually undesirable as they indicate a non-negligible loss of energy from the pulse
to maintain a soliton, highlighting that the cavity design could be altered for improved
efficiency.

2.5.3 Experimental Comparisons

The proposed system was constructed experimentally and exhibited self-started mode-
locking above the lasing threshold. While the simulation assumed polarisation-maintaining
(PM) fibre, in the experiment we used non-PM fibre and included a polarisation controller
in the feedback loop to manually optimise the mode-locking condition. A stable 10 MHz
pulse train was generated, with an optical spectrum at ∼1068 nm (Fig. 2.11) and 0.44 nm
spectral bandwidth. Temporally, autocorrelation measurements of the pulses were well-
fitted with a sech2 shape of 5.1 ps FWHM, corresponding to a pulse duration of 3.3 ps
after deconvolution.

We concluded that the experimental results and simulation were in reasonably good
agreement: the model was able to accurately predict the output pulse properties. Even
though minor differences were observed (e.g. the spectral width), these could be attributed
to uncertainties in the component parameters and possible polarisation effects in the non-
PM cavity compared to the PM model. The simulation correctly captured the expected
dynamics, however, including spectral sidebands from soliton-dispersive wave interaction,
suggesting that the model was suitable for extension to investigate new parameter regimes.

2.6 Summary

In this chapter we have presented a number of computationally efficient techniques for
modelling pulse propagation in optical fibres and simulating short-pulse fibre lasers. After
introducing a formal mathematical description for the electric fields of optical pulses on
numerical grids, we detailed the computation of propagation modes and their properties
in step-index and photonic crystal fibres and discussed the numerical propagation of a
field in fibre, governed by a generalised nonlinear Schrödinger equation. Gain calculations
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Fig. 2.11: Experimental characterisation of mode-locked Yb:fibre laser: (a) optical spec-
trum; (b) autocorrelation trace.

in a ytterbium-doped fibre amplifier were also presented and all of these concepts were
combined to simulate a complete mode-locked fibre laser operating in the net-anomalous
dispersion regime. Good agreement was found between simulations and experimental
measurements, validating the model.

The numerical methods outlined in this chapter enabled accurate, yet quick, mod-
elling of nonlinear fibre optic effects and short-pulse fibre laser systems, and were used
extensively in this thesis to guide experimental designs and provide insight beyond
experimental observations.
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3
LONG-CAVITY MODE-LOCKED

LASERS

Passively mode-locked fibre lasers have become established tools for generating picosec-
ond and femtosecond pulses at megahertz repetition rates. Ever-growing demands from
laser end-users for higher energy and more versatile pulse sources, however, are driving
research to consider new laser designs to broaden the achievable parameter space that
such devices can achieve.

In this chapter we report the development of a long-cavity mode-locked laser archi-
tecture, which can produce highly-chirped, compressible nanosecond pulses at sub-
megahertz repetition rates. We begin by presenting a brief history of pulse shaping
in fibre lasers and the limitations of various possible operating regimes in Section 3.1.
Our long-cavity design is introduced and demonstrated experimentally in Section 3.2,
supported by numerical modelling and with consideration of design improvements to
enhance operating stability. In Section 3.3 we consider techniques to significantly enhance
the pulse peak power by compression, followed by application of these pulses for low-
threshold supercontinuum generation in Section 3.4. Finally, we note that long-cavity
lasers can exhibit rich nonlinear wave dynamics that are of fundamental interest to non-
linear science, which we discuss in Section 3.5 in the context of our observation of dark
soliton structures during radiation build-up. The chapter is concluded in Section 3.6 with
an outlook of the opportunities for the long-cavity laser design.

The results presented herein have been published in the following journal articles and
conference proceedings: [Woo14b, Woo14e, Woo15e, Woo15f, Woo15g, Woo16].
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Chapter 3 Long-Cavity Mode-Locked Lasers

3.1 Introduction: Pulse Shaping in Mode-Locked Lasers

It has long been understood that cavity dispersion and nonlinearity strongly influence
the formation and steady-state characteristics of pulses generated in a mode-locked laser,
in addition to contributions from the spectral filtering effect of a finite gain bandwidth,
gain saturation and loss. Interplay between these effects has led to the categorisation of
laser operation into several distinct regimes (summarised in Fig. 3.1), each with different
intracavity dynamics and output properties.

Soliton Laser: Solitons

Net Anomalous Dispersion Net Normal Dispersion

Stretched-Pulse Laser:
Dispersion-Managed Solitons

All-Normal Dispersion Laser:
Dissipative Solitons

Giant-Chirp Oscillator: 
Giant-Chirped Pulse

Fig. 3.1: Illustration comparing different operating regimes of mode-locked fibre lasers
with different dispersion maps, including the laser names and terms for describing the
pulses they generate.

3.1.1 Historical Perspective

Mode-locking was proposed theoretically in 1964 [Lam64], shortly followed by the first
demonstration of active mode-locking [Har64].1 Passively mode-locked lasers [Moc65,
DeM66] were also reported soon after, but plagued by instabilities; it was not until 1972
that a continuously passively mode-locked pulse train was stably demonstrated, using a
dye saturable absorber in a dye laser cavity [Ipp72b].

In this same year, Zakharov and Shabat solved the nonlinear Schrödinger equation (NLSE)
using an inverse scattering transform to reveal the existence of soliton solutions [Zak72]
(introduced in Section 1.3.4). Remarkably, soliton waves had been observed in nature
as far back as 1844 by John Scott Russell [Rus44], although it was only realised that the
NLSE was an appropriate equation to describe light propagation in fibres in 1973, leading
to the prediction of fibre-optic soliton propagation due to a balance between self-phase
modulation and anomalous dispersion [Has73a].2 Experimental demonstration of optical
solitons in fibre followed seven years later [Mol80].

1Prior to this work, however, a report had been published in German showing pulse generation through the
inclusion of an active modulator in a ruby laser [Gue63]. This was perhaps the real first report of active
mode-locking, although it was not identified at the time.

2Research into the theoretical existence of solitary waves greatly pre-dated this study, following attempts to
explain Russell’s observations by Joseph Boussinesq [Bou71] and Lord Rayleigh [Ray76], and the proposal
of the Kortewerg and de Vries (KdV) equation to describe water waves [Kor95]. The term soliton was
coined by Kruskal and Zabusky in 1965 after further study of the KdV equation to describe the particle-like
behaviour of such solitary waves [Zab65].
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3.1 Introduction: Pulse Shaping in Mode-Locked Lasers

Soliton Lasers

The concepts of mode-locking and soliton propagation were finally united in 1984 with the
report of soliton generation in a mode-locked laser: the soliton laser [Mol84]. The prospect
of a pulse which could propagate over long distances while maintaining both its temporal
and spectral shape was a major incentive to further research, largely motivated by the
growing telecommunications industry at the time. However, one of the conditions for
fundamental soliton propagation is also a major limitation: the soliton area theorem. This
condition expresses the energy of a soliton pulse Ep as a function of the 1/e pulse duration
t0 and fibre dispersion β2 and nonlinearity γ [Zak72, Has73a]:

Ep =
2|β2|
|γ|T (3.1.1)

This limits the maximum practical pulse energy of a soliton laser to ∼0.1 nJ since the
fundamental soliton condition is only satisfied for a specific energy with given fibre
properties and pulse duration. If higher energy pulses form in a net-anomalous dispersion
cavity, disturbances cause them to split, leading to unstable multiple pulsing operation
or multiple fundamental solitons stably and equally spaced in the cavity during one
round-trip. This latter situation is known as harmonic mode-locking, which can be a useful
regime for increasing the laser repetition rate, although is often undesirable if the target is
high-energy single-pulse generation [Gru92b].

Stretched-Pulse Lasers

To circumvent this trade-off between pulse energy and duration due to soliton quantisation,
Tamura et al. proposed a new laser cavity design: the stretched-pulse laser [Tam93]. By
including segments of normally and anomalously dispersive fibre, the pulse in the cavity
broadens and recompresses during each round trip, so the cavity-averaged peak power
is reduced. Therefore, the accumulated nonlinear phase shift is reduced and the pulse
energy can be increased before the onset of multiple pulsing operation. This regime exists
for net anomalous or small normal GVD and can generate pulses with energies up to a
few nanojoules [Ren12]. Such pulses are known as dispersion-managed solitons and by the
nature of temporal, periodic ‘pulse breathing’ in the cavity, the choice of output position
from the cavity determines whether the pulses are chirped or transform-limited.

All-Normal Dispersion Lasers

More recently, work has considered the merits of strong normal dispersion fibre cavities.
Here, solitonic shaping is absent and the interaction of linear and nonlinear effects leads
to a positive monotonic frequency sweep (up-chirp) across the pulse, such that the pulse
width is many times larger than its transform-limited duration and is compressible [Tre68].
It is therefore possible to exploit the properties of linearly-chirped pulses to scale pulse
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Chapter 3 Long-Cavity Mode-Locked Lasers

energies beyond the limits imposed by quantisation of classical optical solitons.

In recent years, a modern terminology has evolved to describe and extend established
operating regimes and dynamics for pulsed lasers in the context of state-of-the-art mode-
locked fibre systems, where the flexibility of the waveguide permits extension of such ideas
to new parameter ranges [DeM04, Cho06, Ren08b]. A large body of work has focussed on
mode-locked all-normal dispersion (ANDi) fibre lasers, which produce linearly-chirped
pulses. In this case, the intracavity pulse dynamics require dissipative (spectral filtering,
gain and loss) and conservative (dispersive and nonlinear) effects to stabilise the pulse,
unlike anomalous dispersion soliton lasers which rely on a balance between dispersion
and nonlinearity alone. Specifically, the pulse broadens as it propagates along normally
dispersive fibre and nonlinear effects result in spectral broadening. After each round-trip
the saturable absorber decreases the pulse width and a spectral filter (either explicitly
added [Cho06] or an effective filter from the limited gain bandwidth of the system [Ped12])
resets the pulse characteristics. Interplay between dispersion and nonlinearity in addition
to dissipative gain filtering and saturable absorber effects effectively compensate the
nonlinear phase shift, stabilising the pulse. These pulses are known as dissipative solitons
[Akh05].

Dissipative solitons are not limited by the area theorem of Eqn. 3.1.1 and can, therefore,
support higher pulse energies. The flexibility of fibre waveguides enables such laser
cavities to be elongated, while maintaining a small system footprint. Such length extension
reduces the repetition rate, providing the opportunity to increase pulse energy based on
the cavity relations:

Ep =
Pav

frep
=

Pav neff L
c

(3.1.2)

where Pav is the average optical power, frep is the repetition rate, neff is the fibre effective
index and L is cavity length.3 This design strategy could not be applied to soliton lasers,
since the additional pulse energy would cause pulse-breakup. In the normal-dispersion
regime, however, the additional fibre length increases the net dispersion, so pulses broaden
and acquire a chirp, in addition to increased energy.

3.1.2 State of the Art

Giant-Chirp Oscillators

Numerous all-normal dispersion lasers have been experimentally demonstrated and by
elongating the fibre cavity, pulse energies up to a hundred nanojoules [Lef10] and pulse
durations up to 150 ps [Ren08b] have been reported. The linear nature of the chirp has
enabled extra-cavity compression to almost the transform limit using a diffraction-grating
pair [Ren08b]. The term giant-chirp oscillator (GCO) has evolved to describe this subset

3Cavity elongation to increase pulse energies has, in fact, been reported with a bulk Nd:YVO4 mode-locked
laser [Kol03], although the complicated optical setup and physical space occupied by the bulk optics limit
the utility of this concept in a non-fibre platform.
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3.1 Introduction: Pulse Shaping in Mode-Locked Lasers

of all-normal dispersion lasers [Ren08b], although the value required to describe a chirp
as ‘giant’ is not precisely defined. However, general properties of GCOs compared to
typical mode-locked ANDi fibre lasers include a lower fundamental repetition rate (few
megahertz), increased pulse energy, and broad chirped pulses (up to ∼150 ps), which
limits the onset of detrimental nonlinear effects.

The large chirp of such pulses is of particular interest for chirped-pulse amplification (CPA)
systems, since a chirped pulse oscillator could replace the standard oscillator, stretcher,
pulse picker and pre-amplifier required in a typical fibre CPA scheme [Str85, Ren08b].

Long-Cavity Noise Burst Lasers

Fibre laser cavities have also been extended to extreme lengths of many kilometres to
achieve significantly greater pulse energies. In 2008, Kobstev et al. reported a 3.8 km laser
producing 3 ns pulses at 77 kHz repetition rate with 3.9 µJ pulse energy [Kob08] – orders of
magnitude higher than typically achieved directly from a fibre oscillator. This was mode-
locked by nonlinear polarisation evolution (NPE), which is an artificial saturable absorber
technique; a detailed discussion of the various different types of saturable absorber is
presented in Section 4.3.1. Further analysis of this long-cavity system suggested that
the observed pulses were actually bursts of light consisting of irregular trains of sub-
pulses [Kob09, Kob14]. Thus, the pulse-to-pulse energy variations and width fluctuations
were high, and there was no phase coherence between pulses.

It is more appropriate to classify this operation as partially mode-locked [Bra74], pro-
ducing noise bursts or noise-like pulses rather than dissipative solitons. This observation
of noise-like pulses agreed with earlier reports of long (net normal and net anomalous
dispersion) cavity NPE-mode-locked lasers [Hor97, Kan98]. Due to the random chirp and
lack of coherence, these pulses are not compressible [Kob09], limiting their application.

Can a Long Cavity Laser Generate Coherent Pulses?

Progress with GCOs and noise burst sources raised the question: is it possible to develop a
long-cavity laser for low-repetition-rate high-energy pulse generation, while maintaining
the linear chirp? This could combine the advantages of both emerging designs, since
compression is desirable for many applications to raise the pulse peak power.

Kelleher et al. provided the answer in 2009 by demonstrating a 1.2 km fibre cavity
mode-locked with carbon nanotubes, generating 2 ns pulses at 177 kHz; critically, the pulse
spectrogram was measured experimentally to confirm the linear chirp [Kel09b, Kel09a].
The pulse spectrum also exhibited steep-sided edges, which are characteristic of chirped
dissipative solitons, compared to the smooth Gaussian spectra of noisy pulses. Further
reports of long-cavity lasers in a cw mode-locking regime followed, using other real
saturable absorbers such as SESAMs [Tia09b, Tia09a].

Despite these demonstrations, questions were raised regarding the compressibility of
such pulses given their giant chirp, and concerns were stated relating to their stability

65



Chapter 3 Long-Cavity Mode-Locked Lasers

and potential as pulse sources for real-world applications [Smi11]. Such issues need to be
addressed to evaluate the potential of long-cavity laser designs as useful pulse sources. It
is in this context that the work in this chapter is set.

3.2 Long-Cavity Chirped-Pulse Generation

We developed an all-normal dispersion fibre laser with a long ring cavity to operate
within the ytterbium gain band (below the zero-dispersion wavelength (ZDW) of standard
step-index fibre), as illustrated in Fig. 3.2. The ytterbium-doped amplifier was formed of a
1.1 m length of double-clad ytterbium-doped fibre, pumped through a wavelength division
multiplexer (WDM) by a 962 nm multimode laser diode and with a second WDM to couple
out the undepleted pump light. We included a polarisation controller (PC) to adjust the
state of polarisation in the cavity (enabling the mode-locked state to be optimised), an
inline polarisation-independent isolator to ensure unidirectional propagation, and a fused
fibre coupler to provide a 10% output port. The main novelty of our design, compared to
conventional mode-locked fibre lasers, was the inclusion of an 840 m reel of fibre to reduce
the repetition rate and to provide a large dispersion to linearise the pulse chirp. Apart
from the active fibre, the laser was constructed entirely of IPG Flexcore fibre (equivalent
to commercially-available Corning Hi1060 fibre). The total cavity length was ∼846 m,
corresponding to ∼18.5 ps2 total cavity dispersion. A bandpass filter centred at 1058 nm
with 10 nm bandwidth was also spliced into the cavity; this was not essential to achieve
stable mode-locking operation, although did fix the central lasing wavelength, as we
discuss later.

To initiate passive mode-locking, a saturable absorber comprised of carbon nanotubes
embedded in a polyvinyl alcohol (PVA) film (∼25 µm thick) was integrated into the cavity
by sandwiching a 1 mm × 1 mm piece of this film between two angled fibre connectors.4

Angled connectors were used with index-matching gel to minimise back reflections, which
could disturb the stable operation of the laser. Nanotube-based saturable absorbers are
a rapidly maturing technology, following the first demonstration of a carbon nanotube
mode-locked laser in 2003 [Set03]. Since then, other nanomaterials have emerged that
present new opportunities for photonic devices, as we discuss in Chapter 4. Therefore,
we refer the reader to Refs. [Has09, Woo14b] for a detailed report of the fabrication of the
saturable absorber in this work and here, we focus on the laser design and pulse dynamics.

3.2.1 Results and Discussion

Continuous wave (CW) lasing was observed at∼1 W pump power. As the pump power was
increased to ∼1.2 W, the output showed a steady pulse train on an oscilloscope, indicating
the onset of self-starting mode-locking. The interpulse spacing of 4.11 µs corresponded

4We thank Prof. Andrea Ferrari’s group at the Cambridge Graphene Centre for fabrication of the nanotube
saturable absorbers, in addition to Drs Daniel Popa and Valentin Wittwer for useful discussions.
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Fig. 3.2: Schematic of long-cavity fibre laser, mode-locked with a carbon nanotube sat-
urable absorber. The total cavity length was ∼846 m.

to the fundamental cavity frequency of ∼244 kHz (Fig. 3.3a). The pulses were measured
using a synchroscan streak camera (also known as an optical sampling oscilloscope),
and found to be well-fitted by a sech2 profile with a full width at half maximum (FWHM)
duration of 1.02 ns (Fig. 3.3b). This width is much greater than pulses that are typically
generated in passively mode-locked lasers with durations less than tens of picoseconds.
Fig. 3.3c shows the corresponding output spectrum, centred at 1058.0 nm and with steep
spectral edges and a structured ‘M-shaped’ peak – features that are often observed in
ANDi lasers and characteristic of coherent dissipative soliton experiments [Ren08a]. Due
to the structured peak, a spectral bandwidth measurement of 0.80 nm was made using the
full width at quarter maximum (FWQM), i.e. the 6-dB width, rather than the FWHM.

To estimate the magnitude of chirp on a pulse, the time-bandwidth product (TBP) is
commonly computed, as the product of the spectral and temporal FWHMs. Due to the
structured spectral peak, we used the FWQM spectral width and FWHM pulse duration
to compute a TBP of ∼220. While this was not strictly mathematically consistent, the
calculated value was ∼700 times greater than the transform limit of 0.315 for a sech2 pulse,
allowing us to draw the conclusion that our laser produced pulses with a giant chirp.
Previous experiments have recorded the spectrogram for similar pulse characteristics and
confirmed the linear nature of the chirp [Kel09a].

Nonlinear polarisation rotation, which has previously been used to (partially) mode-
lock long-cavity lasers in the noise burst regime, did not contribute to our intracavity
dynamics due to the absence of polarisation-selective components (we also confirmed that
mode-locked operation could not be achieved by replacing the nanotube-PVA saturable
absorber with a pure PVA film – confirming the important role of carbon nanotubes for
self-starting mode-locking). By varying the intracavity polarisation through adjustment
of the PC, the intensity noise and jitter of the pulses could be altered to optimise the
mode-locked laser operation. While the laser was able to operate stably for a full-day,
due to the use of non-polarisation-maintaining fibre, physical perturbations to the cavity
and changes in atmospheric temperature led to unpredictable changes in noise and jitter
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Fig. 3.3: Characteristics of long-cavity mode-locked laser output: (a) oscilloscope trace;
(b) streak camera trace; (c) optical spectrum.

performance.

To confirm that the pulses were not noise bursts, we used an autocorrelator to examine
the top of the pulse and found no coherence artefact, which would have indicated bursts
of incoherent noise [Rho13]. However, by tuning the PC and adjusting the pump power,
under certain conditions it was possible to force the long-cavity laser to operate in an
unstable, incoherent noise-burst regime (defined by a broader and more rounded spectrum
and a noisy pulse train [Hor97]). The pulse shape on a streak camera was similar, although
believed to consist of an envelope of short pulses with no phase coherence in this case;
confirmed by the observation of a coherence artefact on an autocorrelator

Stable self-starting mode-locking could also be observed without a filter in the cavity.
Here, the limited gain bandwidth of the system provided a spectral filtering and stabilising
effect. However, it was found that the central wavelength of the laser varied in an
unpredictable way when fibres were disturbed or the PC was adjusted. This was attributed
to strain-induced loss for some polarisation states which altered the cavity dynamics.
Therefore, a 10 nm bandwidth spectral filter, centred at∼1058 nm was included to provide
a restoring force to fix the central wavelength.

Previous reports of long-cavity all-normal dispersion laser cavities have revealed an al-
most linear dependence between pulse duration and cavity length [Kel09b]. Additionally,
with a fixed cavity length, we were able to vary the pulse duration between 0.85 ns and
1.1 ns by varying the pump power. As pump power was increased, the intracavity pulse
energy increased, causing greater nonlinear phase accumulation. Self-phase modulation
broadened the spectrum, which was coupled to temporal broadening by the large dis-
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3.2 Long-Cavity Chirped-Pulse Generation

persion of the cavity, linearising the nonlinear chirp and spreading the increased spectral
bandwidth throughout a longer time window. The relationship between spectral width
and pulse duration was approximately linear, as shown in Fig. 3.4. A maximum output
power of ∼0.25 mW was measured, corresponding to ∼1 nJ pulse energy (assuming all
energy was contained in the pulses and the background level was negligible: pulse energy
= average power / repetition rate) and a peak power of ∼0.89 W (peak power = shape fac-
tor × pulse energy / pulse duration, where a shape factor of 0.88 is used for sech2 pulses).
Any further increase in power resulted in a short period of unstable operation, followed
by the output returning to a CW state, suggesting that the nanotube-PVA composite was
thermally damaged by the intracavity average power. This indicated that the saturable
absorber damage threshold was ∼8 kW cm−2.
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Fig. 3.4: Experimentally measured relationship between spectral width (full-width at
quarter maximum) and pulse width (full-width at half maximum).

Laser Stability

We considered the laser stability by analysing the radio frequency (RF) spectrum, following
the methods proposed by Dietrich von der Linde [vdL86]. It should be noted that the
analysis assumes only small fluctuations and no correlation between intensity and phase
noise, which are not always well justified. However, the technique is useful for estimating
the magnitude of intensity fluctuations, enabling comparison with other mode-locked
lasers since the technique is widely used in the literature.

We measured the RF spectrum using a 1 GHz bandwidth photodetector and 2.2 GHz RF
spectrum analyser. The broadband spectrum across 20 MHz (Fig. 3.5a) showed a regular
train of harmonics with no Q-switching instabilities. At the fundamental frequency, a
high signal-to-background ratio of 50 dB (105 contrast) indicated good pulse-train stability
(Fig. 3.5b). A low-level pedestal with a peak at ∼-50 dB was observed, from which the
pulse-to-pulse energy fluctuations could be estimated [vdL86]:

∆E
E

=

(
∆P∆ f
∆ frbw

)0.5

(3.2.1)

where ∆P is the pedestal-peak to signal-peak power ratio, ∆ f is the width of the pedestal
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(determined by fitting with a Gaussian profile) and ∆ frbw is the resolution of the spectrum
analyser. With ∆P = 10−5, ∆ f = 760 Hz and ∆ frbw = 30 Hz, the energy fluctuation was
1.59%. The 60th harmonic could also be seen to exhibit a high 48 dB peak-to-background
ratio, further confirming the mode-locking stability (Fig. 3.5c).
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Fig. 3.5: RF spectrum of mode-locked long-cavity laser output: (a) 20 MHz span; (b)
8 kHz span about fundamental, f0 = 244 kHz; (c) 8 kHz span about 60th harmonic (30 Hz
resolution bandwidth).

3.2.2 Numerical Simulations

To gain further insight into the dynamics of our long-cavity mode-locked laser, we per-
formed numerical simulations (using the models outlined in Chapter 2 with the experi-
mental parameters described in the previous section). Briefly, an initial shot noise field
was repeatedly propagated through each cavity element in turn, until the field converged
to a steady-state.

The temporal evolution of a coherent dissipative soliton pulse from noise over hundreds
of round trips is shown in Fig. 3.6a. It can be seen that after an initially noisy regime,
light localised within the simulation window forming a pulse envelope, but containing a
high degree of internal structure (i.e. this was only partially mode-locked and could be
described as a noise burst). Noise features within the pulse envelope formed intensity
dips, which propagated away from the pulse centre (i.e. their velocity was different to the
velocity of the pulse envelope). Eventually, by ∼1000 round trips, all these structures had
decayed from the pulse envelope, leaving a coherent bright pulse. On further analysis, we
found that the intensity dips were actually dark solitons, which are solitary-wave solutions
to the NLSE in normal dispersion fibres. The simulation was repeated numerous times
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Fig. 3.6: Simulated characteristics of long-cavity mode-locked laser: (a) pulse evolution
from noise; (b) output pulse profile; (c) output spectrum; (d) output spectrogram.
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Fig. 3.7: Steady-state giant-chirped pulse dynamics within a single cavity round trip:
(a) temporal evolution; (b) spectral evolution. The FWHM pulse duration and spectral
bandwidth are also shown in relation to the cavity components.

from randomised noise seed fields, always converging to the same steady state, but with
different dark soliton dynamics and decay rates. Such observations drove us to consider
the role of dark solitons and the underlying nonlinear dynamics in more detail, which we
report in Section 3.5.

Focussing on the steady-state output, we found remarkable agreement between the
simulated pulses and experimentally measured values. The model resulted in 0.99 ns
duration pulses and a steep-sided optical spectrum with 0.82 nm FWHM bandwidth
(Fig. 3.6b & c). A monotonic frequency sweep was observed across the pulse, showing
that the giant chirp was highly linear (Fig. 3.6d).

The simulation also enabled the temporal and spectral dynamics in the steady-state to
be visualised on a single round-trip of the cavity, as shown in Fig. 3.7. Starting with the
amplifier, the amplitude of the pulse and spectral intensity increased gradually along the
Yb-doped fibre, but showed no change in width. The intensity-dependent transmission
profile of the saturable absorber then attenuated the pulse wings, leading to small ∼25 ps
reduction in pulse duration and since the spectral components were spread linearly
throughout the pulse, this also caused a 0.02 nm reduction in spectral bandwidth. The
isolator and output coupler were both modelled as lumped losses, lowering the intensity
of the field but not altering the shape or width. After this, the 840 m length of passive fibre
induced ∼30 ps pulse broadening and a small ∼0.025 nm increase in spectral bandwidth,
driven by self-phase modulation (SPM).

Finally, the bandpass filter reduced the bandwidth by an almost negligible value of
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3.2 Long-Cavity Chirped-Pulse Generation

∼0.005 nm and correspondingly, reduced the pulse duration by ∼5 ps due to the chirp.
We observed that the bandpass filter has less of a spectral filtering effect than the saturable
absorber, explaining why we were able to achieve stable mode-locking without this
component in experiments. However, it was included to prevent polarisation-induced
shifts in wavelength which occurred in practice, but were omitted from our laser model.
The field was then fed back into the amplifier and the evolution repeated every round trip.

We conclude that there was insignificant pulse breathing in the cavity. Dispersive
broadening was compensated by the saturable absorber and the gain compensated for
losses. In this simulation we ignored the short∼1 m fibre patchcords between components
and lumped their combined length into the long length of fibre at the end of each round trip.
Fig. 3.7 shows that pulse evolution in such short lengths of passive fibre was negligible,
justifying this assumption.

Finally, we note that the onset of stimulated Raman scattering has been proposed as an
ultimate limit to pulse energy scaling of long mode-locked fibre laser cavities [Agu13],
since Raman scattering de-linearises the chirp (due to cross-phase modulation (XPM) between
the signal and noise-seeded Stokes fields) and inhibits pulse compression [Gom85, Wei88b].
At the power levels in our experiments, however, Raman-shifted spectral components
were not observed, since we were limited by the nanotube-PVA saturable absorber damage
threshold.

3.2.3 Scalar Nanosecond Chirped-Pulse Generation

For practical applications of mode-locked lasers, sensitivity to external thermal and
mechanical stresses could be a problem as these disturbances alter the birefringence
of cavity fibre, which can unpredictably degrade the laser performance as described in
Section 1.3.3. The environmental stability of all-fibre lasers can therefore be improved by
using polarisation-maintaining (PM) fibre.

Additionally, the majority of long-cavity mode-locked pulse sources to date have pro-
duced vector pulses, consisting of two coupled propagation modes along orthogonal
polarisation axes. These modes can exchange energy as the birefringence changes (in-
duced by external perturbations) causing the polarisation state to evolve unpredictably
over time. Distinct are vector locked solitons, whose group and phase velocities along
orthogonal polarisation axes are equal, such that the pulse propagates without evolution
in its polarisation state [Cun99]. A scalar pulse with a fixed linear polarisation state is
preferred for certain applications, for example in surface texturing where the formation
of polarisation-sensitive nanostructures determines the morphology and precision of the
surface features [Hna13].

In this section, we present the results of an all-PM fibre long-cavity laser generating
nanosecond pulses with a fixed linear polarisation state.
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Chapter 3 Long-Cavity Mode-Locked Lasers

Experimental Setup

The laser design employed a similar ring cavity to the previous setup, although in this
case PM fibre (ThorLabs panda-style PM980) was used throughout with 0.6 m PM double-
clad ytterbium-doped fibre as the gain medium, as shown in Fig. 3.8. The same carbon
nanotube-based saturable absorber was used, in addition to a PM isolator and a 33%
PM output coupler. In the previous section, it was found that the output spectrum
in the long-cavity mode-locked regime could be broadened with increasing power. A
larger spectral bandwidth is desirable for extracavity compression and supports a shorter
transform-limited pulse duration. Therefore, we chose a 300 m length of highly nonlinear
fibre (OFS PM Raman Fibre) to elongate the cavity and to increase the total intracavity
dispersion and nonlinearity: the greater fibre nonlinearity compared to standard fibre was
intended to increase spectral broadening through SPM. A fusion splicer with rotating fibre
stages (Ericsson FSU 995 PM) was used to align polarisation axes when constructing the
cavity. The highly nonlinear fibre was spliced to PM980 fibre using a mode-field matching
algorithm with ∼0.3 dB splice loss and >30 dB calculated polarisation extinction ratio.
The total cavity length was ∼312 m.

Carbon
Nanotube
Saturable
Absorber33% Output

Coupler

PM Ytterbium
Doped Fibre

Isolator

300 m
PM Highly 
Nonlinear 

Fibre

Laser 
Output

WDM

Pump
Diode

WDM

Fig. 3.8: Schematic of all-polarisation-maintaining long-cavity fibre laser, mode-locked
with a carbon nanotube saturable absorber. The total cavity length was ∼312 m.

Laser Characterisation

The laser exhibited self-starting mode-locking at∼1.4 W pump power, producing a regular
train of pulses with a period of 1.56 µs, defined by the fundamental cavity frequency
of 641 kHz (Fig. 3.9a). The pulse energy was ∼0.15 nJ. The output pulse had a sech2

shape with a FWHM duration of 1.06 ns (Fig. 3.9b), which is the longest reported mode-
locked pulse from an all-PM fibre laser to date. Fig. 3.9c shows the corresponding output
spectrum, which was centred at 1041 nm with a 1.19 nm FWQM. As with the non-PM
laser reported earlier, the pulse and steep-sided spectral shape suggested that these pulses
were linearly chirped dissipative solitons with a time-bandwidth product hundreds of
times greater than the transform limit.
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Fig. 3.9: Characteristics of all-polarisation-maintaining long-cavity mode-locked laser
output: (a) oscilloscope trace; (b) streak camera trace; (c) optical spectrum.

The laser operated stably over many hours with no measurable change in output
properties. Operational characteristics were also unchanged when the system was inten-
tionally perturbed by mechanically stressing the cavity fibre, demonstrating the robust
mode-locking performance and high environmental stability of the laser.

Compared to our previously demonstrated long-cavity laser, the spectral width of
1.19 nm was∼50% broader, despite using a much shorter cavity length to achieve a similar
∼1 ns pulse duration. We attributed this to our use of highly nonlinear fibre to extend
the cavity rather than standard silica fibre. This suggests that the laser architecture can
be engineered to produce pulses with a wide range of durations and repetition rates by
varying the length of cavity fibre and its properties.

The RF spectra for the fundamental, 60th harmonic and a 20 MHz span are shown in
Fig. 3.10, which enabled us to quantify laser stability. The 20 MHz span plot shows a
steady train of cavity harmonics without spectral modulation instabilities. We observed a
high signal-to-background ratio of 61 dB (106.1 contrast) for the fundamental (Fig. 3.10a),
which suggests good pulse-train stability. A low-level pedestal with a peak at∼-61 dB was
observed, from which the pulse-to-pulse energy fluctuations was calculated as 0.45%. This
was a low pulse energy fluctuation, especially compared to the 1.6% value of the previous
source and the 7% fluctuation reported for a nanosecond pulse source in Ref. [Zha13a].
Mode-locking stability was also confirmed by the high 52 dB peak-to-background ratio
(105.2 contrast) of the 60th harmonic (Fig. 3.10b).
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Fig. 3.10: RF spectrum of 312 m long-cavity mode-locked laser output: (a) 20 MHz span;
(b) 8 kHz span about fundamental, f0 = 641 kHz; (c) 8 kHz span about 60th harmonic (30
Hz resolution bandwidth).

Polarisation Measurements

The polarisation state of light can be fully described by a set of four values known as the
Stokes parameters, which are commonly expressed as the Stokes vector: S = (S0, S1, S2, S3).
To measure these parameters, we collimated the output of the fibre laser and built a free-
space polarimeter consisting of a rotating quarter-wave plate (QWP) and linear polariser
followed by a power meter (Fig. 3.11a). The combination of a waveplate and polariser
transform the polarisation state into an intensity value I that can be measured directly.
Therefore the Stokes parameters can be deduced from only four power measurements
with specific angles of the polariser θ and waveplate φ relative to a fixed axis [Chi95]:

S0 = I(θ = 0◦, φ = 0◦) + I(θ = 90◦, φ = 0◦) (3.2.2a)

S1 = I(θ = 0◦, φ = 0◦)− I(θ = 90◦, φ = 0◦) (3.2.2b)

S2 = 2I(θ = 45◦, φ = 0◦)− I(θ = 0◦, φ = 0◦)− I(θ = 90◦, φ = 0◦) (3.2.2c)

S3 = 2I(θ = 45◦, φ = 90◦)− I(θ = 0◦, φ = 0◦)− I(θ = 90◦, φ = 0◦) (3.2.2d)

It is common to normalise the vector to S0 =1, enabling useful polarisation parameters
to be obtained from these values, including the degree of polarisation (DOP) and degree of
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Fig. 3.11: Measurement of optical polarisation state: (a) schematic of polarimeter; (b)
linearly polarised output state of 312 m long-cavity laser shown as a red dot on the
Poincaré sphere.

linear polarisation (DOLP) [Chi95]:

DOP =
√

S2
1 + S2

2 + S2
3 (3.2.3a)

DOLP =
√

S2
1 + S2

2 (3.2.3b)

Using the polarimeter and Eqn. 3.2.2 we measured the Stokes vector of the PM fibre long-
cavity laser to be: S = (1.00, 0.93, − 0.27, 0.11), indicating a 97% degree of polarisation
and 96% degree of linear polarisation. This confirmed that the output was strongly
linearly-polarised (shown visually on a Poincaré sphere in Fig. 3.11b), highlighting that
the laser produced scalar pulses. The extinction between the two polarisation axes was
14.1 dB and the polarisation state was unchanged by mechanical or thermal perturbations
to the cavity. The origin of the polarisation-selectivity in the cavity was the coupler, which
was optimised to give a lower cavity loss on the slow-axis; it was therefore favourable
for radiation to build-up in this axis and the high-birefringence minimised coupling
between the fast and slow axis to maintain a fixed linear polarisation state. In contrast, the
output polarisation of the non-polarisation-maintaining 846 m-long laser was found to be
partially polarised and varied randomly with disturbances to the cavity fibre, explaining
the variation in performance over time.

3.3 Pulse Compression by Chirp Compensation

A pulse with a linear up-chirp can be compressed by introducing a down-chirp to compen-
sate the frequency-sweep of the pulse. This can be achieved by using optical components
with anomalous dispersion, such as a diffraction grating pair, anomalously-dispersive
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Fig. 3.12: Schematic for up-chirped pulse compression techniques: (a) double-pass bulk
grating pair; (b) single-pass anomalously-dispersive PCF; (c) chirped fibre Bragg grating
and circulator (with numbered ports).

fibre or a chirped fibre Bragg grating (Fig. 3.12).

Bulk Diffraction Grating Pair

Pulse compression is commonly achieved using a pair of bulk diffraction gratings, first
proposed by E. B. Treacy in 1968 [Tre68]. A typical experimental setup using reflective
gratings is shown in Fig. 3.12a. The beam of chirped pulses (i.e. the collimated output
from the laser source) is diffracted from the first grating, angularly dispersing the pulse
spectral content, with the diffraction angle given by:

θd = arcsin
(

mλ

d
− sinθi

)
(3.3.1)

where m is the diffracted order (typically ±1 for highest efficiency), λ is the instantaneous
wavelength, d is the grating pitch (1 / number of lines per mm) and θi is the incident
angle. Diffraction from a second parallel grating then causes the beam to become parallel
again. Since the leading part of the pulse (containing longer wavelengths) diffracts at a
larger angle, the optical path length is longer. This delays the arrival time of the front
of the pulse, bringing spectral components closer together in time. This compensates
the chirp by realigning the spectral components in time, compressing the pulse duration.
With a single-pass of the grating pair, the output beam is also spatially chirped, which
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3.3 Pulse Compression by Chirp Compensation

is unsuitable for focussing back into a fibre. Therefore, it is common to double-pass the
compressor to undo the spatial chirp on the return pass, effectively doubling the delay
that can be introduced; this is achieved with a mirror after the gratings which is very
slightly angled so the reflected beam is offset from the incoming beam and thus, can be
picked-off by an additional mirror.

The wavelength-dependent spectral phase delay for a single pass of the grating pair
is [Tre69]:

ϕ(ω) =
ω

c
L

cos(θi − θd)
(1 + cos θm)−

2πL
d

tan(γ− θm) (3.3.2)

where L is the parallel grating separation, θd is the diffracted angle and θm is the acute
angle between incident and diffracted rays (θm = θi − θd). We simulated the effect of a
grating pair on our giant-chirped pulses numerically by multiplying the modelled pulse
field in the frequency domain Ã(ω) by the response of a double-pass through the grating
pair arrangement exp(−i2ϕ(ω)).

Gratings with 1200 lines per mm and a 45◦ angle of incidence were considered. By
adjustment of the separation distance we found that pulse compression was possible, with
an optimum compressed duration of 6.1 ps (Fig. 3.13a). The chirp across the compressed
pulse was almost zero, indicating strong chirp compensation, although small wings and
a low-level pedestal could be seen that we attributed to residual nonlinear chirp. This
was confirmed by observing the pulse spectrogram (Fig. 3.13b). The effect of the grating
is purely linear - there is no nonlinearity, and it should be noted that practical gratings
would introduce a loss of up to 25% per reflection. While this simulation confirmed that
the long-cavity laser pulses were compressible, the diffraction grating separation required
for this was 88.5 m. Clearly, this was not a practical solution and other methods needed to
be considered.
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Fig. 3.13: Simulated pulse compression by a double-pass diffraction grating pair with
1200 lines per mm and 45◦ angle of incidence: (a) pulse shape and chirp; (b) spectrogram.
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Anomalously Dispersive PCF

Since pulse broadening in the long cavity was due to normally dispersive fibre, a length
of anomalously dispersive fibre could be used to undo the chirp (Fig. 3.12b). Conven-
tional step-index fibres are always normally dispersive at our laser wavelength, due to a
dominant contribution from material dispersion (silica’s ZDW is ∼1270 nm) as discussed
in Section 1.3.3. However, advances in PCF technology have enabled the fabrication of
speciality fibres with large air holes, providing a high effective index contrast between
the solid core and microstructured cladding which yields strong waveguide dispersion
to shift the ZDW towards visible wavelengths. Consequently, anomalous dispersion is
possible at 1058 nm.

We explored the possibility of employing a large-air-hole PCF for pulse compression,
specifically using the commercially-available NKT NL-2.8-850 fibre. This has 2.5 µm
diameter holes and a pitch of 2.6 µm . From these parameters, we constructed a nu-
merical model of the fibre using the vector analytical effective index method described
in Section 2.2.2. The ZDW was estimated as 861 nm and the dispersion at 1058 nm
was D = 61.6 ps nm−1 km−1 nm (Fig. 3.14), in good agreement with the manufacturer
datasheet.
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Fig. 3.14: Properties of large air hole PCF (NKT NL-2.8-850) with d = 2.5 µm and Λ =
2.6 µm : (a) SEM image of microstructure; (b) computed dispersion curve.

For our giant-chirped pulse with ∆λ = 0.81 nm spectral FWHM, the transform-limited
duration was ∆ttl ∼ 1.5 ps. Therefore, to compress to the transform limit, the required
length of PCF was approximated by: L ∼ (∆tfwhm − ∆ttl)/(D∆λfwhm) = 20 km.

We simulated the pulse propagation along this fibre, with an input peak power of 1 W
(Fig. 3.15). After only 0.3 km, the pulse exhibited heavy distortion. Spectral sidebands
emerged and noise grew on the peak of the pulse. Such behaviour is characteristic of
modulation instability: a four-wave mixing phenomena which is phase-matched by self-
phase modulation and well-known to occur for broad pulses in anomalously dispersive
media. Modulation instability caused the breakdown of the field into fundamental solitons,
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seeded by noise fluctuations, and the linear chirp was destroyed, as confirmed by the
simulation after 0.35 km.

Nonlinearity appeared detrimental for pulse compression here, although we note that
modulation instability can be usefully used, as discussed in Section 3.4 in the context of
supercontinuum generation. It should also be noted that nonlinear compression is an
alternative route to improving compression factors, although this differs from the present
situation: typically, a nonlinear stage (in a normal dispersion environment) broadens the
pulse spectrum to reduce the transform-limited duration, followed by linear compression
(with anomalous dispersion) to reduce the pulse width to approach this limit [Tom84].
Unfortunately, anomalously dispersive large-air-hole PCFs intrinsically possess small
cores and hence, tight modal confinement yields high intensities; the nonlinear coefficient
of this PCF was γ = 35 W km−1 at 1058 nm, an order of magnitude greater than normal
fibre. Additionally, the long lengths required for sufficient dispersion lead to a large
nonlinear phase accumulation, suggesting that nonlinear effects are inevitable.
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Fig. 3.15: Simulated propagation of 1 W peak power giant-chirped pulses in anoma-
lously dispersive PCF. The strong nonlinearity of PCF resulted in modulation instability,
breaking up the pulse rather than showing linear compression.

To verify if this compression strategy could work in the absence of nonlinear effects, we
reduced the peak power to a very low value of 0.1 mW and repeated the simulation. In
this instance, strong compression was observed while maintaining the quality of the pulse
(Fig. 3.16). After 25 km, the duration was reduced to a minimum value of 5.7 ps, with a
negligible change in instantaneous frequency across the pulse, indicating that the giant
chirp had been compensated. Small pulse wings could be seen due to a slight nonlinear
chirp on the original pulse that could not be compensated, or possibly from the effect of
higher order dispersion in PCF, which could also explain why the compressed duration is
not quite the transform-limited value.

From these numerical experiments, we have demonstrated that the giant linear chirp of
long-cavity laser pulses can be compressed using anomalous dispersion in PCF. However,
this is not a practical route experimentally as the long length of PCF would be costly and
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Fig. 3.16: Simulated propagation of 0.1 mW peak-power giant-chirped pulses in anoma-
lously dispersive PCF. The low launch power avoided nonlinear effects, enabling linear
compression of the pulses by compensating the chirp.

lossy (fibre loss was neglected in simulations) and the limitation of sub-milliwatt input
peak powers is lower than the power required for many practical applications.

Chirped Fibre Bragg Grating

An alternative all-fibre compression technique is to engineer a chirped fibre Bragg grating
to compensate the chirp. Fibre Bragg gratings (FBGs) are narrow-band reflectors constructed
of periodic modulations of refractive index in the core of an optical fibre, first demonstrated
by Kenneth Hill in 1978 [Hil78]. Wavelengths for which the Bragg condition is met are
strongly reflected through constructive interference of the waves that are Fresnel reflected
from each period of the grating, according to:

λB = 2neffΛ (3.3.3)

where neff is the effective index seen by the propagating mode and Λ is the periodic
structure pitch (i.e. period spacing). The reflection band of a grating corresponds to
a photonic bandgap in frequency-space – a frequency range where there are no real,
propagating solutions to Maxwell’s equations, only evanescent waves.5 Chirped fibre Bragg
gratings (CFBGs) are constructed by gradually decreasing the grating pitch along the
length of the device so the Bragg reflection wavelength, λB(z) decreases with position, z,
along the grating length, L. For an incident pulse on a CFBG, longer wavelength spectral
components propagate further into the grating before being reflected (or vice versa, if
the CFBG direction is reversed), introducing a wavelength-dependent delay. A chirped
pulse with bandwidth ∆λ will experience a delay τ between the longest and shortest

5It can be instructive to consider the FBG in this case as an effective unstructured medium with a real
refractive index at frequencies outside the bandgap and an imaginary index within the bandgap [Sip94].
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wavelength components:

τ =
2neff∆λ

c dλB
dz

(3.3.4)

where dλB
dz is the rate of change of Bragg wavelength along the CFBG. Therefore, by

matching the delay to the chirped pulse width, the spectral components in the pulse
will temporally realign upon reflection from the CFBG, compensating the chirp and
compressing the pulse [Oue87]. The CFBG reflection bandwidth is set by the length of the
grating and the strength of index modulation controls the reflectivity.

Experimentally, a CFBG can be integrated into a system using a 3-port circulator, to
direct the reflected light to an output port (Fig. 3.12c). CFBG-based compression is flexible
as the grating properties can be engineered to match the laser pulses and the alignment-
free all-fibre format of the system is maintained. Additionally, only standard step-index
fibre is required, which can be spliced with low-loss using conventional fusion splicers.
Therefore, this was our chosen technique to compress the giant-chirped pulses.

3.3.1 CFBG Design and Fabrication

For optimum compression, it is important that the CFBG reflection band overlaps with
the pulse spectrum and the chirp rate is equal and opposite to the frequency sweep on
the pulse. Using Eqn. 3.3.4 and writing a CFBG into fibre assuming neff ∼ 1.45, the
required rate of change of Bragg wavelength to introduce a delay equivalent to the 1 ns
pulse duration between the long and short wavelength components (∆λ = 0.82 nm) was
dλB
dz ∼ 0.008 nm mm−1. Therefore, the CFBG length was to be ∼145 mm to yield a

sufficiently broad reflection bandwidth.

Conventionally, FBGs are fabricated using a phase mask: a silica plate with etched
grooves, which creates an interference pattern through diffraction of incident UV light. By
positioning the interference pattern on a Ge-doped fibre, the optical intensity pattern is
transferred to a refractive index grating in the fibre core, due to photosensitivity of the
fibre at UV wavelengths. Specifically, photosensitivity arises from GeO defects which
are typically present in the silica matrix of the core – UV light breaks these defect bonds,
forming colour centres that modify the local glass absorption and hence the refractive
index, according to the Kramers-Kronig relations. Prior to processing, fibres are routinely
loaded with hydrogen gas, which enhances the defects and enables greater refractive index
modulation depths to be achieved, creating stronger (i.e. more reflective) FBGs [Kas99].

Phase masks are produced lithographically with the required period to achieve a par-
ticular FBG period and modulation depth. CFBGs can be produced by either bending
or tilting the target fibre, to cast an uneven interference pattern on the surface, or by
fabricating chirped phase masks. These techniques are regularly employed for fabricating
millimetre-long gratings, but are not suitable for accurately writing a varying structure
over longer distances, as required for our proposed >100 mm CFBG.

Therefore, we established a collaboration with École Polytechnique de Montréal, Canada,
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where a new direct writing system for long FBGs had recently been developed [Gag14].6

Briefly, a phase mask mounted on a piezoelectric-driven translation stage was integrated
into a Talbot interferometer to generate a moving fringe pattern on a fibre. This fibre
was moved along its axis using a 1 m long high-precision translation stage while the
piezo-driven phase mask was driven with a ramp signal at a frequency to match the speed
of the moving fibre. To induce a chirp, the movement speed of the fibre was slightly varied
linearly.

Tuning of CFBG Reflection Window

CFBGs were fabricated in Flexcore fibre from our specification, although it was difficult
to precisely define the reflection window to within 0.1 nm accuracy, as required for our
application. This fabrication uncertainty arises due to hydrogen evaporation from the
fibre after the grating has been written, causing a shift of the reflection window to shorter
wavelengths. Therefore, a variety of gratings were produced and it was necessary to tune
the as-manufactured CFBG reflection band to achieve optimum compression.

Since the Bragg wavelength of a grating is proportional to the pitch, the reflection
window can be red-shifted by heating or stretching the device to cause expansion. To
measure this effect, a broadband ASE source was connected to the input of a 100 mm long
CFBG and the transmitted light from the back of the grating was monitored on an optical
spectrum analyser - the dip in transmission showed the window of reflected light.

Initially, we submerged the CFBG in a heated waterbath and observed shifts of ∼0.1 nm
per 10◦C temperature increase up to 70◦C. However, the long delay between setting the
temperature and the water heating up / cooling down suggested that this method was
unsuitable. Therefore, we implemented a stretch-tuning setup by gluing one grating
end to a fixed point and mounting the other on a linear translation stage. The CFBG
elongated under increasing tension, causing a linear shift of the Bragg wavelength at a rate
of ∼7.5 nm per mm extension and showing no distortion of spectral features (Fig. 3.17).
However, at 0.5 mm extension, the fibre snapped. This corresponded to a maximum strain
of 0.5% and a maximum redshift of ∼4 nm, which was sufficient tunability to compensate
for manufacturing tolerances. We compared this to the expected theoretical shift using
Eqn. 3.3.3: for an initially unstretched CFBG with reflection band centred at 1054.4 nm,
we expect a grating period at the centre equal to 363.6 nm. A 0.5% strain will increase the
grating period to 365.4 nm, leading to a red shift of ∼5 nm, in reasonable agreement with
the experiment. 7

6We thank Prof. Raman Kashyap and Sébastien Loranger at École Polytechnique de Montréal for CFBG
fabrication and fruitful discussions regarding pulse compression.

7While not considered here, the temperature and strain dependence of FBGs enables them to be used as
very sensitive sensors, which are widely deployed in variety of industrial environments [Kas99].
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Fig. 3.17: Red-shifting of CFBG reflection window under strain: (a) Transmission profile
at increasing extension values, showing a shift in wavelength with no change in shape;
(b) measured wavelength shift against extension, showing a linear relationship

Preliminary Compression Results

A 100-mm long CFBG with a ∼0.008 nm mm−1 chirp rate (hereafter referred to as CFBG-
1) was spliced to port 2 of a 3-port circulator, with an ASE source connected to port 1.
The grating was stretch-tuned to centre the reflection band at 1058 nm, measured by
monitoring the transmitted light after the CFBG (Fig. 3.18a). The ASE source was then
replaced by the output of the long-cavity laser. Light reflected from the grating was
monitored at port 3 using an optical spectrum analyser and streak camera.

The power of the long-cavity laser was adjusted to slightly change the spectral width,
and the CFBG strain could be tweaked to fine-tune the reflection band. With poor overlap
between the reflection band of CFBG-1 and the laser spectrum, a highly distorted reflected
signal was recorded. Through strain tuning, as the overlap approached the optimal value,
the intensity of the leading edge of the pulse increased and narrowed. In the best case,
a feature with ∼196 ps width could be observed within a pulse envelope containing
other peaks and noisy features (Fig. 3.18b). This temporal shape and spectrum were
independent of the laser power, confirming the absence of nonlinear effects (as expected
since the long-cavity laser average output power was < 1 mW; we discuss limitations
to power-scaling later). However, despite many attempts to tune the spectral width and
grating wavelength, it was not possible to produce a less distorted or narrower pulse.

In the design of CFBG-1, two effects had been overlooked. Firstly, CFBGs have a
finite length: the light sees an abrupt change in the refractive index at the beginning
and end of the grating structure compared to the standard fibre core index. This step
function corresponds to a sinc function in the spectral domain (via the Fourier transform),
which adds sidelobes to the reflection spectrum and oscillations to the group delay. From
a more physical viewpoint, this can be described as Fabry-Pérot oscillations from the
grating boundaries. Additionally, strong dispersion arises at the reflection band edges
due to the frequency dependence of the transmission, as described by the Kramers-Kronig
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Fig. 3.18: Experimental giant-chirped pulse compression with CFBG-1: (a) grating trans-
mission profile; (b) streak camera trace of the reflected pulse from the grating.

relations [Kra27, Kro25]. Using the Fabry-Pérot description of this situation, the enhanced
dispersion can be attributed to the increased delay which is experienced by frequencies
that are trapped in the Fabry-Pérot cavity for many round-trips [Sip94]. Overlap between
the pulse spectrum and reflection band edges can therefore introduce additional dispersion
over a narrow bandwidth, which distorts the pulse. While FBG band-edge dispersion
has been usefully exploited for pulse compression [Lit97], it is much less controllable and
considered as a distorting factor here.

To solve these problems, a longer grating with the same chirp rate was required, to
increase the CFBG reflection bandwidth and prevent overlap between the band edges and
the pulse spectrum. Additionally, to prevent reflection sidelobes, a grating can be apodised,
meaning that the index modulation strength is gradually reduced towards the ends of the
grating, preventing the step change. A Gaussian apodisation profile is often used (since
the Fourier transform is also a Gaussian), with the form: a(z) = exp

(
− (z−0.5L)2

2w2

)
where

z = 0 is defined as the start of the grating of length L and the Gaussian envelope FWHM
is 2w

√
2ln2 [Che97a].

The experiment was repeated using a second CFBG (referred to as CFBG-2) with the
same chirp rate, but double the length (200 mm) and with a 80 mm FWHM Gaussian
apodisation profile. The apodisation profile was created by adding a Hamming function
to the piezoelectric-controlled phase mask to reduce the coupling constant during fabri-
cation [Gag14]. In this case, the reflection band (observed by transmitting ASE through
the grating) was wider than CFBG-1 and showed tapered, rather then steep, spectral
edges (Fig.3.19a). As before, when the grating spectrum overlapped with the long-cavity
laser spectrum, pulse compression was observed due to chirp compensation. However,
the compressed pulse quality was significantly improved: a single peak was recorded,
upon only a small pedestal with amplitude less than 20% of the peak height (Fig. 3.19b),
suggesting the design improvements had been beneficial. The compressed duration was
also slightly improved to 175 ps. For a linearly chirped pulse with 0.82 nm bandwidth,
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it should be possible to approach the transform-limited duration of ∼1.4 ps, which is
two orders of magnitude shorter than our measurements. This suggested that the Bragg
wavelength change rate specified in Section 3.3.1 was not optimum. Therefore, in order to
determine an improved CFBG specification, we simulated the problem using numerical
modelling.
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Fig. 3.19: Experimental giant-chirped pulse compression with CFBG-2: (a) grating trans-
mission profile; (b) streak camera trace of the reflected pulse from the grating.

3.3.2 Modelling of CFBG Properties

FBGs can be considered within the established framework of electromagnetic wave prop-
agation in periodically modulated media. A thorough mathematical treatment would
solve Maxwell’s equations with the periodic structure as a boundary condition, yielding
a general form of the fields in terms of Bloch waves (which are the eigenmodes of peri-
odic media) [Blo29]. However, this is highly involved and practically unnecessary for
understanding FBGs, since the modulation depth is typically small (∆n � neff, limited
by the fibre’s photosensitivity) so simplifications can be made. Indeed, it is sufficient to
employ coupled-mode theory to describe the problem as the interaction of two counter-
propagating modes (using two coupled differential equations), representing the incident
and reflected light [Mil54, Yar73]. Fortunately, an analytical solution exists for uniform
FBGs with a constant period, which is commonly expressed as a transfer matrix to describe
the FBG response.

For a chirped FBG with a varying periodic structure, however, there are no known
closed-form solutions. Therefore, the piece-wise transfer matrix method method was pro-
posed: by splitting the grating into hundreds of uniform segments with progressively
varying properties, the transfer matrix for each segment can be analytically computed and
the overall CFBG response found by multiplying all the transfer matrices together [Yam87],
as illustrated in Fig. 3.20. This technique has been widely demonstrated to accurately
simulate CFBG properties and thus, was our chosen modelling method for this problem.
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Fig. 3.20: Illustration of the numerical modelling method for simulated CFBGs. A long
grating with continuously varying properties is split into many uniform FBGs for which
the properties can be analytically computed. The CFBG response is found by multiplica-
tion of all the component FBG transfer matrices. Colour is used to indicate the reflected
wavelength at each position: blue indicates shorter wavelengths.

Numerical Implementation

The refractive index profile of a fibre grating can be expressed as:

n(z) = n0 + ∆n0 a(z) cos
(

2π

Λ(z)
z
)

(3.3.5)

where z is the distance along the FBG, n0 is the background index of the fibre, ∆n0 is the
grating modulation depth, Λ(z) is the pitch (period spacing), which varies with z and a(z)
is the apodisation profile.

The coupled wave equations describing the amplitudes of the transmitted field A(z)
and reflected field B(z) are [Yar07]:

dA(z)
dz

= −i κ(z) B(z) exp(i∆βz) (3.3.6a)

dB(z)
dz

= i κ∗(z) A(z) exp(−i∆βz) (3.3.6b)

where we have introduced the coupling constant κ (with complex conjugate κ∗) as:

κ =
π

λ
∆n0 a(z) (3.3.7)

and the wavenumber mismatch ∆β (representing the detuning of the wavelength from
the Bragg wavelength) as:

∆β = 2
2πneff

λ
− 2π

Λ(z)
(3.3.8)

To model a CFBG of length L, we adopted the piece-wise transfer matrix approach
and divided the structure into N segments. For accurate results, many segments of
length l ≈ L/N are required, such that Λ � l � L and we ensured that each segment
was an integer number of grating periods to give a smooth transition between them
(avoiding the introduction of unphysical phase jumps). Each segment was assumed to be
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an independent uniform FBG with a fixed value for the pitch and coupling constant, as
set by the position of the segment along the FBG length: Λ(z) =

(
λ0 +

dλB
dz z

)
/ (2neff) =[(

λc − L
2

dλB
dz

)
+ dλB

dz z
]

/(2neff) where λ0 is the Bragg wavelength at the start of the CFBG,
which can be determined from the chosen reflection band central wavelength λc, length L
and the Bragg wavelength change rate dλB

dz . The analytical solution relating the fields at
the start and end position of the nth segment is:[

an−1

bn−1

]
= Mn

[
an

bn

]
(3.3.9)

where an−1 is the input field, bn−1 is the reflected field (i.e. backwards field at segment
entrance), an and bn are the forward- and backward-propagating fields at the end of the
segment, respectively, and Mn is the segment’s transfer matrix [Yar07]:

Mn =

cosh(sn ln) + i ∆βn
2sn

sinh(sn ln) i κn
sn

sinh(sn ln)

−i κ∗n
sn

sinh(sn ln) cosh(sn ln)− i ∆βn
2sn

sinh(sn ln)

 (3.3.10)

where sn =
√
|κn|2 − (∆βn/2)2.

The overall response of the CFBG, M, is found by matrix multiplication of all the
independently-computed segment matrices (illustrated in Fig. 3.20):[

a0

b0

]
= M1M2M3 · · ·MN

[
aN

bN

]
= M

[
aN

bN

]
=

[
M11 M22

M21 M22

] [
aN

bN

]
(3.3.11)

Principally, we are interested in determining the reflected field at the start of the CFBG, b0

for a known input field a0, which can be expressed by the reflection coefficient:

r(ω) =
b0

a0
=

M21

M11
(3.3.12)

To implement this model, we computed r at each wavelength in the numerical grid
on which our simulated pulse field was based. The CFBG reflectivity was obtained
from |r(ω)|2, and the group delay was found by differentiating the spectral phase with
respect to angular frequency dϕ

dω , where spectral phase is the angle argument of r(ω).
The interaction between the pulse and grating is a time domain convolution, which we
computed as a product in the frequency domain of the complex pulse field and grating
reflection coefficient. Prior to applying the model to our problem, it was thoroughly
tested with different numbers of segments (to ensure no dependence on the numerical
gridding) and by recreating simulation results from literature, such as those summarised
in Ref. [Che97a].
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Simulation Results

CFBG-1 was simulated using the parameters specified in Section 3.3.1. The modulation
depth ∆n0 was not precisely known, but was estimated as 5×10−5 by choosing a value
which resulted in a similar peak reflectivity as the experimentally fabricated gratings, since
the modulation depth determines the coupling constant and hence, the reflectivity. The
calculated properties showed a ∼0.8 nm grating reflection band with steep edges and a
linear group delay across the band, as intended in the CFBG design (Fig. 3.21a). The group
delay was only plotted within the reflection band since at other wavelengths the reflected
amplitudes are negligible so the phase is effectively undefined. With a long-cavity laser
pulse as the input electric field, the reflected field from the grating is shown temporally
and as a spectrogram in Figs. 3.21b & c. Compression to 161 ps FWHM was obtained, in
reasonable agreement with the value of 196 ps from the experiment. Additionally, the
pulse was slightly distorted and asymmetric, although less strongly than observed in the
streak camera measurement. A linear chirp also remained on the pulse, indicating that
further chirp compensation was possible.

Pulse distortion from CFBG-1 was caused by oscillations in the group delay (shown
magnified in Fig. 3.21a inset), and from overlap between the pulse spectrum and the steep
reflection band edges. Experimentally, CFBG-2 demonstrated improved compression, due
to the longer length and Gaussian apodisation profile. These effects were also observed
when simulating CFBG-2 (Fig. 3.22): the apodisation profile tapered the reflection band
edges and removed oscillations from the group delay so the reflected pulse field was free
from distortion. The remaining linear chirp on the pulse, however, suggested that the
CFBG chirp rate was not optimised.

Using the numerical model, we explored the impact of grating chirp rate on the output
pulse duration (using a 400 mm long CFBG length and 300 mm FWHM Gaussian apodis-
ation to avoid the aforementioned distortion effects). A steady decrease in compressed
pulse duration was observed by decreasing the chirp rate until around 0.006 nm mm−1,
achieving a minimum pulse duration of 6.2 ps (Fig. 3.23). Any further decrease in rate
caused the compressed duration to grow again, as in this case the grating-introduced
down-chirp was larger than needed to compensate the up-chirp, causing a residual down-
chirp after reflection.

The characteristics of the optimum grating (CFBG-3) and the reflected pulse shape and
spectrogram are shown in Fig. 3.24. The compressed pulse quality was excellent and
well-fitted by a sech2 shape. Across the pulse width there was negligible chirp, indicating
almost perfect compensation of the pulse’s linear chirp from the CFBG. However, a very
small pedestal was observed which could be attributed to the chirp at the edges of the
pulse not being perfectly linear, arising from higher-order dispersive effects in the long-
cavity laser. Consequently this nonlinear up-chirp could not be compensated by the linear
CFBG down-chirp. This is illustrated more clearly by comparing the giant-chirped pulse
spectrogram to the CFBG response (Fig. 3.25). The grating response was highly linear

90



3.3 Pulse Compression by Chirp Compensation

1055 1056 1057 1058 1059 1060 1061
Wavelength (nm)

60

40

20

0
R
ef

le
ct

iv
ity

 (
dB

) x5

0

1

  
  

  
  

G
ro

up
 D

el
ay

 (
ns

)

450 225 0 225 450
Time (ps)

0.0

0.5

1.0

In
te

ns
ity

 (
a.

u.
)

Sech Fit

161 ps 100

0

100

  
  
  
C
hi

rp
 (

G
H

z)

450 225 0 225 450
Delay (ps)

1057

1058

1059

W
av

el
en

gt
h 

(n
m

) -20 0 dB
Intensity

(a)

(b) (c)

Fig. 3.21: Simulated giant-chirped pulse compression with CFBG-1: (a) grating reflectiv-
ity and group delay; (b) reflected pulse profile; (c) reflected pulse spectrogram.
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Fig. 3.22: Simulated giant-chirped pulse compression with CFBG-2: (a) grating reflectiv-
ity and group delay; (b) reflected pulse profile; (c) reflected pulse spectrogram.
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across the reflection bandwidth. However, while the central region of the long-cavity laser
pulses were linearly chirped, curvature of the spectrogram was noticeable towards the
edges. It should also be noted that the optimum properties corresponded to an induced
delay between the long and short wavelength components (0.82 nm apart) of 1.37 ns,
using Eqn. 3.3.4. This value was almost equal to the FWQM duration of the original pulses.
It can be understood that using the FWQM to define the required CFBG delay, rather
than the FWHM delay we initially specified, gives better compression since the pulse
spectrum was spread over a greater part of the pulse than contained within the middle
sections of amplitude greater than half the maximum. These simulations confirmed that
a grating-based compression technique should be able to achieve ultrashort pulses, and
paved the way to an improved CFBG specification to realise this experimentally.
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Fig. 3.23: Impact of CFBG Bragg wavelength change rate on the compressed pulse dura-
tion, determined from numerical simulations.

3.3.3 Improved Experimental Compression

A new grating was fabricated based on the optimum specification determined from
numerical modelling (CFBG-3), and integrated into the compression setup at port 2 of
the circulator. After stretch-tuning the length to ensure the pulse spectrum was within
the grating reflection band, the reflected signal showed highly compressed pulses on
a streak camera (Fig. 3.26a). The streak camera measurement was resolution-limited,
necessitating the use of an intensity autocorrelator to determine the compressed width.
The autocorrelation trace showed a reasonably high-quality pulse, fitted by a sech2 profile
with a width of 17 ps, which deconvolved to give a FWHM pulse duration of 11 ps
(Fig. 3.26b).

The giant-chirped pulses have been compressed by a factor of ∼100. The reflectivity of
the grating was measured to be ∼70%, suggesting that this compression resulted in ∼70
times peak power enhancement. A larger pedestal than expected from simulations was
observed, due to uncompensated nonlinear chirp, although it was calculated that more
than 70% of the energy was within the pulse. Additionally, the factor of two difference
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Fig. 3.24: Simulated giant-chirped pulse compression with CFBG-3 (optimised grating
specification): (a) grating reflectivity and group delay; (b) reflected pulse profile; (c)
reflected pulse spectrogram.
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Fig. 3.25: Comparison of simulated spectrograms for (a) giant-chirped long-cavity laser
output pulses and (b) CFBG-3 response.
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between the measured compression factor and the numerical modelling could be due
to small manufacturing imperfections during grating fabrication. The pulse spectral
width was unchanged by the compression (Fig. 3.26c) confirming that this was a linear
compression scheme.
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Fig. 3.26: Experimental giant-chirped pulse compression with CFBG-3: (a) resolution-
limited streak camera trace and (b) autocorrelation trace of reflected pulses; (c) pulse
spectrum before and after compression.

3.4 Supercontinuum Generation with Long-Cavity Lasers

We have demonstrated that long-cavity lasers can be sources of highly-chirped compress-
ible pulses for simple and compact chirped pulse amplification systems. Additionally,
compared to conventional mode-locked fibre lasers at megahertz repetition rates, the low
kilohertz pulse repetition frequency enables higher peak-power-to-average-power ratios,
which permit the exploitation of nonlinear effects with only moderate amplification. One
such application is supercontinuum generation.

3.4.1 Introduction to Supercontinuum Generation

Supercontinuum generation is a process where the spectrum of light is significantly broad-
ened to cover a wide spectral bandwidth with high spatial coherence, arising from a
cascade of nonlinear optical effects. While numerous reports in the historical literature
observed nonlinear spectral broadening, it is commonly accepted that the first supercon-
tinuum, spanning 400 to 700 nm, was demonstrated by Alfano and Shapiro in 1970 in bulk
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borosilicate glass [Alf70].8 More recently, the development of PCFs has heralded new op-
portunities for supercontinuum generation in these highly nonlinear dispersion-tailorable
fibres [Ran00].

Briefly, there are three main regimes for supercontinuum generation in fibre [Dud06]:

• Anomalous dispersion with short-pulse pumping – Short pulses that correspond
to low-order solitons (typically, soliton order N < 15 and durations < 100 fs)
undergo temporal compression and spectral broadening in the initial propagation
stages. However, rather than breathing and returning to the original properties
after travelling a distance corresponding to the soliton length, perturbations such
as higher-order dispersion and Raman scattering alter the dynamics, leading to
the break-up of the pulse into N fundamental solitons (soliton fission). Raman self-
frequency shift of these solitons leads to further broadening of the long-wavelength
edge, and the short-wavelength edge is pushed out by dispersive waves through
resonant energy transfer from the Raman solitons, across the ZDW.

• Anomalous dispersion with long-pulse / quasi-CW / CW pumping – Long pulses
(typically N > 15 and > 1 ps duration), very broad pulses (nanosecond and mi-
crosecond timescales, known as quasi-CW) and CW light will experience broadening
dominated by modulation instability. This generates sidebands about the pump and
splits the field into many fundamental solitons, which then continue to broaden the
spectrum by the same Raman self-frequency shift and dispersive-wave processes
described for the short-pulse case. Since modulation instability is noise-seeded, the
temporal coherence of such supercontinua is very low.

• Normal dispersion – Soliton dynamics are absent in normal dispersion environ-
ments. Here, short high-peak power pulses generate spectral bandwidth by self-
phase modulation, leading to supercontinua with high temporal coherence. Longer
pulses and CW fields experience stimulated Raman scattering, pushing the spectral
edge through a cascade of Stokes lines, potentially with further broadening through
four-wave mixing.

In reality, these regimes are not discrete and the difference between short and long
pulses is not clearly defined. The magnitude of dispersion is also a major contributing
factor to the dynamics. However, this categorisation helps to broadly describe the different
ways that a cascade of nonlinear processes can lead to extreme spectral broadening.

Fibre-based supercontinuum sources have rapidly transitioned from research curiosities
to commercial products, with a wide range of applications including as an illumination
source in fluorescence imaging and for broadband spectroscopy, in addition to frequency
comb generation. We believe that the long-cavity laser architecture could be advantageous
for generating low-average-power supercontinua: creating a broad spectrum of light

8Early publications referred to this effect as anomalous frequency broadening or white light generation; it was not
until 1980 that the term supercontinuum was coined [Ger80].
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without the cost and complexity of high-power components and amplifiers. This is made
possible by the low repetition rate, leading to greater pulse energy and peak power for a
given average power.

Kobtsev et al. recently demonstrated a similar concept, reporting a 500-1750 nm super-
continuum source by pumping a length of anomalously-dispersive PCF with an ultra-long
8 km mode-locked fibre laser. However, the laser was operating in a noise-burst regime,
producing incompressible 10 ns pulses and consequently, amplification up to 3 W average
power was required [Kob10]. Other approaches to low-threshold supercontinuum genera-
tion include Q-switched fibre pulse sources [Che97b], which operate at tens of kilohertz
repetition rates and nanosecond to microsecond pulse durations. For higher peak powers,
shorter pulses are required, but are limited by the length of fibre needed for a Q-switched
fibre cavity. Microchip lasers, which are monolithic solid-state devices with a gain crystal
sandwiched between two mirrors, can provide shorter (ps) Q-switched pulses due to
the reduced cavity length, enabling low-pump-power supercontinua [Sto08]. However,
microchip laser sources require their free-space output to be focussed into the PCF, losing
the alignment-free, turn-key operation benefits of an all-fibre system. Therefore, com-
pressed picosecond pulses from our mode-locked long-cavity laser could be an alternative
pump format for enabling spectral extension without such significant amplification. Such
sources could be cost-effective, compact tools for optical characterisation of components.

3.4.2 Experimental Setup and Results

The 11 ps duration of the compressed long-cavity laser pulses suggested that spec-
tral broadening dynamics in the anomalous dispersion regime would be modulation
instability-driven. We chose to pump at an anomalously dispersive wavelength rather
than in a normally dispersive environment as this can enable broader continuum genera-
tion (otherwise, without solitonic shaping effects, pulses quickly broaden and the peak
power reduces, limiting further broadening in the normal dispersion regime), although at a
cost of lower temporal coherence. For optical device characterisation applications, a broad
spectral width is more important than the source coherence. To maximise modulation
instability-driven spectral broadening, pumping close to the ZDW is also preferable to min-
imise the duration of fundamental solitons which develop from the input pulse [Dud06].
For this reason, we chose to pump a PCF with a ZDW at 1040 nm.

The experimental setup for supercontinuum generation is shown in Fig. 3.27. A low-
power (< 100 mW) ytterbium-doped fibre amplifier was included before the circulator, to
raise the energy of chirped pulses and to overcome the loss introduced by the circulator
(∼0.5 dB per pass) and the 70% reflectivity of the CFBG (∼1.5 dB loss). Spectral and
temporal pulse properties were preserved during amplification. The circulator output
(port 3) was fusion-spliced to a 30 m length of solid-core PCF with 1.47 µm hole diameter,
3.20 µm pitch and∼4.9 µm core diameter (Fig. 3.27 inset). To achieve a reasonably low-loss
splice between Flexcore fibre and the PCF, a splice-optimisation programme was followed
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Fig. 3.27: Schematic for supercontinuum generation in PCF with compressed long-cavity
laser pump pulses.

to determine the optimum fusion time and current; the lowest loss obtained was ∼0.65 dB.

As the pulse energy launched into the PCF was increased, the spectrum rapidly broad-
ened (Fig. 3.28). For an average launch power into the PCF of only 30 mW (taking into
account circulator and splice losses), a supercontinuum was observed spanning from
∼550 nm to 2050 nm; just under two octaves of spectral content. On the long wavelength
side, there was less than 10 dB intensity variation between 1100 and 2000 nm. The feature
at ∼1380 nm is related to water loss in the fibre, and ∼1750 nm indicates the transition
between data recorded on an optical spectrum analyser (5 nm resolution) and longer
wavelength data measured with a spectrometer (22 nm resolution).

Spectral sidebands on the pump were observed during the early evolution of the
continuum with increasing pump power, which are a signature of modulation instability.
At 30 mW average pump power, the pulse energy was ∼125 nJ, corresponding to a
peak power of ∼10 kW. Therefore, from the PCF parameters (β2 ∼-2 ps2 km−1 and
γ ∼11W km−1 at 1058 nm), we estimated the soliton order as N ∼1400. This clearly
corresponded to the long-pulse pumping regime, and hence, modulation instability-
initiated supercontinuum dynamics were expected. Further increase in pump power was
limited by the amplifier (a small low-power device was deliberately chosen to demonstrate
that the concept could work for low cost, compact components). However, as the power
increased, the rate of spectral extension decreased, due to the sharply rising silica loss
beyond ∼1.8 µm . Consequently, it is expected that even with higher pump powers, the
supercontinuum could not extend beyond ∼2400 nm. If this was a requirement, however,
alternative glasses could be considered, such as chalcogenide fibres, which can have
transmission windows up to 25 µm [Pet14].

3.4.3 Simulation and Discussion

To gain further insight into the spectral broadening dynamics, we numerically simulated
the propagation of our compressed pulse field through the PCF (modelling methods
described in Section 2.3). The compressed field (Fig. 3.24b) was used as the input, scaled
to a peak power of 10 kW as in the experiment.
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Fig. 3.28: Experimental supercontinuum generation in PCF pumped by compressed long-
cavity laser pulses, showing the spectral evolution with average pump power and the
spectrum at 30 mW pump power (∼10 kW peak power).
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Fig. 3.29 shows the simulated spectral evolution along the length of the PCF and the
output spectrum. The simulation shows many of the features of the experimental super-
continuum, with a reasonable reproduction of the spectral extent and flatness. However, it
should be noted that the simulation corresponds to a single shot measurement, compared
to experimental measurements on an optical spectrum analyser that are averaged over
many shots within the device integration time on millisecond timescales (resolution is also
a limiting factor, so the simulated field was first convolved with a 5 nm Hanning window
to model this effect). Therefore, while defined peaks are visible at the long wavelength
edge of Fig. 3.29 corresponding to self-frequency shifting Raman solitons (discussed in
the next paragraph), the exact spectral position of these peaks is noise-dependent and will
vary on a shot-to-shot basis. Consequently, these features were averaged out when viewed
experimentally. Since the model appears to have reproduced the major spectral features
of the measured supercontinuum, we can use it to examine the underlying nonlinear
dynamics.

Rapid spectral broadening occurred in the first 1 m of the fibre. The evolution, tempo-
rally and spectrally, in this region is shown in detail in Fig. 3.30, in addition to spectrogram
representations of the field at salient points during the evolution in Fig. 3.31. The 1058 nm
pump pulse (Fig. 3.31 top left) experienced weak anomalous dispersion in the PCF. Conse-
quently, a power-dependent phase-matching condition governed the position of spectral
sidebands, which grew from energy transfer by a four-wave mixing process (Fig. 3.31 top
right) involving the annihilation of two pump photos to create Stokes and anti-Stokes
photons. The process was seeded from noise. Sideband intensities increased with propa-
gation distance, leading to a breakdown of the temporal field into fundamental solitons
(Fig. 3.31 bottom left). Such solitons were much shorter than the input pulse and possessed
greater peak powers, according to the soliton area theorem (Eqn. 1.3.20). This confirmed
modulation instability as the supercontinuum initiation process, leading to numerous
interlinked processes that occurred simultaneously to gradually push the spectral extents
of the supercontinuum along the remainder of the fibre.

Firstly, the short duration of the fundamental solitons resulted in broad bandwidths
(exceeding 13.2 THz) such that the long-wavelength edge of the soliton experienced
Raman gain, pumped by the short-wavelength edge. This induced a shift towards longer
wavelengths, known as soliton self-frequency shift [Dia85, Mit86]. Due to the spectral-
dependence of group velocity and effective area in the fibre, the red-shifting solitons
decelerated (shown by the arcing shape in Fig. 3.31). The presence of solitons travelling at
different velocities inevitably led to collisions too, transferring energy to the higher-energy
soliton, which caused pulse narrowing and spectral broadening, followed by further
Raman self-shifting to longer wavelengths [Isl89].9

Solitons with a bandwidth spanning to less than the ZDW can emit energy into the

9The growth of a small number of extremely high-energy pulses after many collisions is also occasionally
interpreted in the context of rogue wave generation [Sol07], for drawing parallels between supercontinuum
generation in fibre and other nonlinear systems.
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normal dispersion regime in the form of dispersive waves (also known as non-solitonic
radiation). Cross-phase modulation and four-wave mixing coupled the dispersive wave
to the red-shifting soliton, inducing a blue-shift of the dispersive wave. This is shown
clearly in Fig. 3.31 (bottom right), with an intense soliton co-propagating with a ‘trapped’
dispersive wave: the intense soliton modified the local refractive index, creating a potential
which prevented walk-off of the dispersive wave. Four-wave mixing pumped by light in
the normal dispersion regime, with sidebands at the blue and red edges also broadened the
spectrum. Since the four-wave mixing could be pumped with wavelengths within a wide
range, there is a broad net gain bandwidth, which leads to spectrally flat supercontinuum.
The limit to spectral extension is believed to be sharply increasing loss from IR absorption
on the long-wavelength side; when the simulation was repeated without loss, the long-
wavelength edge extended further to ∼2300 nm.

Our simulation has highlighted the rich nonlinear dynamics involved in the generation
of a supercontinuum from the compressed long-cavity laser pulses. The rapid initial broad-
ening to ∼1900 nm was complete by ∼3 m, indicating that significantly shorter lengths
of PCF could be used, depending on the required bandwidth of device characterisation
applications. Additionally, the four-wave mixing process could be further optimised for
extension to shorter wavelengths by tailoring the dispersion of the PCF or using a fibre
taper with gradually varying properties [Kud06]. However, this experiment has con-
firmed the benefit of the low repetition rate long-cavity laser design for supercontinuum
generation at a low threshold.
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Fig. 3.29: Simulated spectral evolution and final spectrum of supercontinuum in PCF
pumped by 10 kW peak power compressed long-cavity laser pulses. Note that this is a
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Fig. 3.30: Simulated (a) spectral and (b) temporal evolution in the first 1 m of PCF
pumped by 10 kW peak power compressed long-cavity laser pulses.
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3.5 Radiation Build-Up Dynamics

In addition to the practical applications of long-cavity mode-locked lasers as low-repetition-
rate pulse sources, these systems present an interesting platform for fundamental studies
of the underlying nonlinear wave dynamics. Numerous reports have already unveiled a
wealth of nonlinear physics within mode-locked fibre resonators including rogue waves
[SC11], optical turbulence [Kär99, Tur09], soliton explosions [Cun02, Run15], and the
manifestation of self-organisation effects to support a variety of localised bright and dark
soliton structures [Str05, Chu15, Kel14]. Fibre lasers are just one example of nonlinear
dispersive systems that can be described in the framework of a NLSE, however, also
including hydrodynamics and Bose-Einstein condensates. Therefore, these lasers provide
a convenient table-top platform for exploring such dynamics, which could offer insight
into other physical systems.

While simulating our long-cavity laser (described in Section 3.2.2), we observed dark
soliton-like structures as the laser turned on, which persisted for hundreds of round
trips before decaying to leave a coherent pulse. In this section, we explore the radiation
build-up dynamics in detail and consider the interaction of dark solitons with each other
and the bright pulse background, in addition to the implications of such dynamics for
laser applications and other nonlinear systems.

3.5.1 Introduction to Dark Solitons

We begin by briefly reviewing theoretical concepts and experimental observations of
dark solitons in optical fibres. In Section 1.3.4, solitary wave solutions of the NLSE
in anomalously dispersive fibre with nonlinearity10 were introduced, known as bright
solitons [Zak72, Has73a]. In the presence of normal dispersion, bright solitons are not
supported and pulses will broaden temporally and spectrally as they propagate. There
are, however, a class of solitary wave solutions to the NLSE in normal dispersion, which
manifest as intensity dips known as dark solitons [Zak73, Has73b].

The fundamental (N=1) dark soliton is an anti-symmetric function which appears as
an intensity-dip on a CW background, with zero intensity and an abrupt π phase jump
at the centre [Tay92]. Specifically, this is a black soliton and dark pulses can also exist
with non-zero intensity at the centre and a gradual and weaker phase shift, referred to as
gray solitons (Fig. 3.32a). Physically, intensity dips can be explained by considering the
CW background as plane waves and noting that the phase jump results in destructive
interference between phase shifted plane waves on each side of the soliton [Zak98]. For
total destructive interference, i.e. an intensity dip to zero (black soliton), a π phase shift is
clearly required.

10We implicitly assume positive (focussing) nonlinearity here, which is always the case for fibres. The
situation would be reversed for defocussing nonlinearity [Kiv98].
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Fig. 3.32: Dark solitons: (a) analytical intensity and phase profiles for varying blackness;
(b) portion of long-cavity laser simulation pulse (highlighted in inset) at round trip 940
(as originally shown in Fig. 3.6a) showing that the intensity dip is well-fitted by a black
(B = 1) soliton profile and the dip corresponds to a ∼π phase jump.

The profile of a dark soliton is given by [Tom89]:

A(t) = A0

√
B−2 − sech(t/t0)2 × exp[iφ(t/t0)] (3.5.1)

where A2
0 is the intensity dip and B is the blackness parameter (0 ≤ |B| ≤ 1) defining

the ratio of the dip minimum to the background, such that the background power level
(measured in watts) is (A0/B)2. The 1/e duration of the soliton is related to the fibre
parameters by:

t0 =

√
N2β2

A2
0γ

(3.5.2)

and the phase is:

φ(t/t0) = sin−1

 Btanh(t/t0)√
1− B2sech2(t/t0)

 (3.5.3)

The time-dependent phase shift results in significantly different behaviour to bright
solitons, which have a constant phase. Notably, dark solitons do not form bound states
nor exhibit periodic evolutions – higher-order dark solitons (and indeed, high-power
dark pulses generally) will evolve into a fundamental dark soliton and dispersing gray
solitons [Tay92].

Due to the complexity of generating dark soliton waveforms compared to bright pulses,
it was not until 1987 that dark soliton propagation was observed experimentally [Emp87,
Kro88, Wei88a]. These demonstrations created dark solitons on a background pulse – an
approach which could be questioned, as to rigorously satisfy the soliton condition a CW
background is required, rather than one of finite-extent. It was later shown, however,
that bright background pulses only ten times wider than the dark soliton were sufficient
for adiabatic dark soliton propagation to be observed, even in the presence of the bright
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pulse spreading out and developing a chirp from propagation in normally dispersive
fibre [Tom89, Kiv94].11 While dark soliton evolution does not depend on the background
phase, the motion of these pulses was found to affected by the local background intensity
gradient [Gre90].

More recently, reports have emerged of dark pulse mode-locked lasers emitting trains
of dark solitons [Zha09, Syl02], supported by numerical investigations [Abl11]. On a
practical level, it has been suggested that dark solitons provide advantages over bright
solitons for high-bandwidth long-distance communications, as dark solitons are less
affected by noise and timing jitter [Zha89, Nak95], and they could even be leveraged to
develop steerable optical waveguides [LD92, Dia95].

To explore the dark pulses we observed in our long-cavity laser simulations, we overlaid
the intensity-dip structures with the analytical function describing a dark soliton in
Flexcore fibre (Fig. 3.32b). The high quality of the fit and ∼π phase step across the centre
of the dark pulse affirm its designation as a dark soliton solution to the NLSE. Having
confirmed our hypothesis that dark solitons exist in the radiation build dynamics, we then
studied their evolution and interaction in more detail.

3.5.2 Dark Soliton Creation and Decay

The laser simulation was executed many times, starting from different randomised shot
noise fields. Each time, the simulation converged to the same steady state, although
the build-up dynamics and the number of round-trips required for the pulse to display
negligible iteration-to-iteration changes was found to vary. Borrowing terminology from
nonlinear mathematics: the laser design and cavity component parameters established the
basin of attraction, creating a fixed-point attractor (the stable giant-chirped pulse) towards
which all suitable initial conditions converged.

From turn-on, in the first few round-trips the shot noise field experienced strong ampli-
fication, growing in intensity at all time positions in the simulation window. The effect of
the saturable absorber and gain saturation localised energy within a temporal envelope,
which evolved towards a bright coherent pulse as internal envelope structure decayed.
In this section, we focus on this transient regime between the initial noisy state and the
coherent bright pulse, where dark solitons spontaneously formed from noise fluctuations
and propagated within the bright pulse envelope over many hundreds of round trips
before decaying.

Creation

Although unexpected, it is not surprising that dark solitons were observed: noise pertur-
bations created intensity dips, which evolved into dark solitons in the presence of normal

11Strictly, these dark pulses on a finite background are not solitary-wave solutions to the NLSE – i.e. they
are not eigenvalues of the field after an inverse scattering transform [Zak73, Gre90]. However, since the
quasi-stationary dark pulses numerically and experimentally retain the properties and behaviour of dark
solitons, we shall continue to refer to them as such.
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dispersion since these are the stable solutions to the NLSE [Zak73]. This is analogous
to arbitrary bright waveforms converging towards soliton solutions in the anomalous
dispersion regime [GN89], although dark soliton generation is thresholdless and thus
occurs more readily [Gre90].

It is interesting, however, that dark solitons existed for hundreds of round-trips in the
radiation build-up dynamics of a bright coherent pulse and then decayed. Our simulations
considered a non-conservative system, including periodic gain, loss and with Raman,
shock and higher-order dispersion terms included. The temporal evolution plots (e.g.
Fig. 3.6a) were constructed by stacking the field intensity arrays at the laser output for
many consecutive round trips (each iteration corresponded to a propagation distance
of ∼840 m). We therefore observed the motion and interaction of these dark features
over hundreds of kilometres of fibre propagation. This is a novel situation: if we attempt
to realise this in a conservative system along 100 km fibre with a dark soliton upon a
bright pulse, the bright pulse would simply dispersively broaden and the gradient (and
amplitude) of the pulse wings would be constantly changing. In our laser, however, the
saturable absorber compensated broadening and the gain compensated losses, maintaining
an almost constant bright pulse envelope around the whole cavity (as verified in Fig. 3.7).

To gain further insight, we reduced the cavity length to 120 m, which is still much longer
than typical fibre lasers and permitted simpler analysis of the dynamics. We performed 600
simulations and analysed the ensemble dataset to understand the underlying behaviour.

Tracking Algorithm

To quantify dark soliton motion, it was necessary to isolate the many dark solitons in
each round trip and to track their movement over the whole simulation. We developed a
two-part algorithm for this purpose.

First, we searched for all dark soliton structures in the time-series data of each com-
pleted simulation. To ignore trivial noise fluctuations in the initial region, the search was
commenced when the envelope width of the radiation was less than half the extent of the
simulation time window. Since dark solitons possess a characteristic phase change across
the pulse, we identified qualifying dark structures in each round trip by differentiating the
phase of the temporal field and applying a peak detection routine. The process searched
through all round trips within each full simulation dataset, identifying and storing all
spatiotemporal locations of dark soliton structures to a separate array.

Secondly, the reduced dataset was re-processed to correlate structures that exhibited
temporal coherence from round trip to round trip (i.e. assigning all the data points to
coherent dark soliton trajectories). This was implemented by enforcing causality and
searching for dark soliton structures in consecutive round trips that lay within a given
time delay tolerance. When found, it was assumed that the dark solitons in adjacent
round-trips were following a continuous path. If a dark structure could not be found in
future round trips, it was deemed to have disappeared; if a structure was identified with
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no correlation to the previous round trip, it was recorded as a new dark soliton. This
process repeated until all dark solitons in the reduced dataset had been assigned to a
trajectory, which enabled us to track how they moved through the bright pulse envelope.

Fig. 3.33 shows a section of a processed evolution for a 120 m cavity, where the coloured
dots indicate dark soliton trajectories; visual inspection of the processed dataset and
original simulation suggested that the algorithm correctly identified and tracked the dark
structures.
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Fig. 3.33: Temporal evolution of radiation build-up in 120 m long-cavity mode-locked
laser. Pulse profiles are shown as insets at various iterations and a magnified region of
the evolution is shown with the tracked dark solitons overlaid as coloured trajectories.

Decay

Our basic observation of dark soliton decay refers to the intensity-dip travelling at a
different group velocity to the background pulse, resulting in walk-off as it moves out of
the bright envelope.

This behaviour is expected for gray (|B| < 1) solitons, since the slope of the phase
profile (and thus, the instantaneous frequency) varies with B, changing their relative
velocities [Kiv98]. Therefore, gray solitons always decay by moving out of the envelope,
with ‘paler’ solitons travelling quicker and thus decaying faster. The phase of black
solitons, however, determines that they should propagate at the same velocity as the
background. In our simulations, the majority of dark structures that formed were black
solitons, or at least dark grey ones (which moved very slowly relative to the envelope).
Therefore, we must consider how these decay.

One explanation is due to the shape of the background. Since this was a bright pulse
envelope, many dark solitons existed in the envelope wings, on a sloped background
intensity. Kivshar and Yang proved that such an intensity gradient imparts a phase upon
any dark solitons it contains, resulting in a gradient-dependent velocity change of the
solitons relative to the background group velocity [Kiv94].
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Fig. 3.34: Histogram showing that the frequency of dark soliton occurrence decreased
with increasing soliton lifetime. A small number of long-lived dark solitons were ob-
served, deviating from the expected power law decay behaviour. To create this plot, dark
soliton trajectories were identified using the tracking algorithm, the lifetimes (number of
round trips in each trajectory) were computed and then binned.

Therefore, dark solitons created within our bright pulse experienced a continually
changing slope, and thus, changed group velocity as they moved. At the pulse peak,
black solitons travelled at the same speed as the bright pulse (exhibiting quasi-stationary
behaviour) and hence, should not have decayed. The peak was an unstable equilibrium
point, however. Perturbations (e.g. gain, loss or small deviations from black (B = 1)
behaviour) therefore triggered a dark solitons at the peak to begin its descent.12 Once
solitons began moving down the wings, they were accelerated, leading to the curved
trajectories seen in Fig. 3.33 and ultimately, to their disappearance.

Lifetimes

After applying our tracking algorithm to the ensemble of 600 simulations, we analysed the
aggregate data to study the dark soliton lifetimes, defined as the number of round trips
between spontaneously forming and moving out of the background pulse. It is common to
attempt to describe distributions of noise-driven transient dynamics with a power law. We
computed a histogram for the soliton lifetime with a bin size of 1 round trip and fitted a
power law of the form, y = Ax−k with scaling factor A and power k to the data (Fig. 3.34).

The data shows that short-lived dark solitons occur much more frequently than per-
sistent solitons with a long lifetime, and a heavy-tail distribution is observed. We fit the
empirical data with a power law, which is widely used to describe decay in complex
systems, in addition to appearing in a broad range of noise-seeded physical phenom-
ena [Cla09]. The frequency y is, therefore, proposed to vary with soliton lifetime x as
follows: y = Ax−k, with normalization factor A = 1× 106 and exponent k = 2.77. For

12This situation is analogous to marbles on a hill. A marble can be stationary at the peak, but is unstable and
a small perturbation can start it rolling downhill. Initially, it moves slowly but gains speed at it continues
travelling down.
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lifetimes shorter than approximately 50 round trips, the power law accurately describes
the distribution. Significant deviation, however, is observed for longer lifetimes. This
suggests that such persistent quasi-stationary solitons can be considered as rare events:
phenomena which occur with an unlikely, but non-negligible, probability. Rare events
are particularly interesting in nonlinear systems tending towards an attractor, helping
to reveal aspects of the underlying dynamics, which could ultimately be controlled for
practical exploitation [Dud14].13 These observations pave the way for further work to
quantitatively relate the soliton decay mechanisms to their lifetime and more generally, to
contribute to understanding the underlying factors responsible for rare phenomena.

To relate the lifetimes to our discussion of decay mechanisms, we plotted a 2D histogram
of lifetimes relative to the position of dark solitons spontaneously forming within the
bright envelope (zero refers to the centre of the pulse). The long-lived solitons are seen
to be clustered towards the pulse centre. This is commensurate with our argument:
dark solitons that formed here experienced a shallow background intensity gradient and
travelled at a speed very similar to the background, yielding a long lifetime.
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Fig. 3.35: Two-dimensional histogram showing the frequency of dark soliton lifetimes
and the position at which they were spontaneously created within the bright pulse
(centred at 0 ns). Long-lived dark solitons tended to be created near the centre of the
background pulse.

3.5.3 Interactions and Collisions

Interactions between multiple dark solitons can also act as a destabilising factor that leads
to their decay. While it has been shown (for a conservative system) that dark solitons
collide elastically, they each experience a temporal shift from the interaction [Thu91].

13Much recent work has considered optical rogue waves, which manifest in modulation instability-driven
supercontinuum as the rare occurrence of waves with significantly higher amplitude than the surrounding
solitons. Studying such events has led researchers to identify signatures in the wave dynamics which
precede an extreme-amplitude wave and could help predict their occurrence [Bir15]. If this understanding
can be translated to ocean waves, the benefits in helping ships to avoid dangerous ‘freak waves’ could be
significant.
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Fig. 3.36: Collision of black (B2 = 1) and dark gray (B2 = 0.9) solitons on a 1 W back-
ground in Flexcore fibre: (a) temporal field evolution; (b) illustration highlighting how
the dark solitons pass through each other, undergoing a time shift but maintaining their
direction; (c) pulse shapes and phase profiles before and after the collision (colour is used
to define each soliton).

Therefore, dark solitons continue to propagate with an unchanged velocity after a collision,
but their trajectory is slightly time-shifted.

We illustrate this in Fig. 3.36a by simulating a black and dark grey (B2 = 0.9) soliton
travelling on a CW background in Flexcore fibre. The black soliton is travelling at the
velocity of the CW background and is on a constant trajectory, whereas the grey soliton
is propagating more slowly. On collision, they experience a mutual time shift and then
continue propagating along the same trajectory as before (highlighted by the illustration
in Fig. 3.36b). The phase is also unchanged by the interaction, showing the same phase
jump after the collision as before it (Fig. 3.36c).

The magnitude of the time shift is strongly dependent on the blackness of the interacting
solitons. A greater B2 value leads to a greater time shift, as shown in Fig. 3.37. We note
that these dynamics have also been verified for dark solitons on backgrounds of a finite-
extent [Thu91].

Interestingly, we were able to see these same patterns in the radiation build-up dynamics
of our laser model. Within every simulation, the spontaneous generation of many dark
solitons with different blacknesses and on different background slopes led to a wide
range of soliton velocities – causing many collisions. These collision events can be seen in
Fig. 3.33, and also in Fig. 3.38a that shows an additional laser turn-on evolution for the
same simulation parameters.

For example, in the ∼220th round trip, two almost-black solitons collided and moved
through each other, experiencing time shifts (Fig. 3.38b). Other collisions between paler
gray solitons were seen in the early dynamics (e.g. around 100 round trips) showing a
smaller time shift. Our observations therefore suggest that the behaviour of dark soliton
interactions in conservative systems can be extended to dissipative media with periodic
gain and loss.
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Fig. 3.37: Collision of a black (B2 = 1) soliton on a 1 W background in Flexcore fibre with
gray solitons possessing blackness parameters: (a) B2 = 0.8; (b) B2 = 0.6; (c) B2 = 0.4.
Darker solitons lead to larger time shifts when colliding.
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Fig. 3.38: Radiation build-up dynamics in 120 m long-cavity mode-locked laser (using the
same numerical model as Fig. 3.33, but with a different initial noise field): (a) temporal
evolution; (b) dark soliton profiles within the bright pulse, before and after a collision at
200 and 240 round trips, respectively (colour is used to define each soliton).
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Chapter 3 Long-Cavity Mode-Locked Lasers

In the context of dark solitons decaying, the collision-induced time shift could have
forced solitons in the quasi-stable envelope peak to shift into the sloped wings, destabil-
ising them and accelerating their decay. Dark soliton interactions are therefore a further
reason why they do not appear in the steady-state laser output.

3.5.4 Discussion

Our analysis of dark soliton dynamics within laser radiation build-up has centred on
simulations of a 120 m mode-locked fibre cavity. However, we have observed dark solitons
in simulations of all-normal dispersion lasers with many different length cavities (varying
from tens of metres to kilometres). This is explained as dark solitons are the solitary wave
solution to the NLSE in this environment. The longer cavity length merely enhances the
effect as the increased cavity modal content increases the number of round trips required
before all modes are phase-locked and the coherent steady state is reached. By contrast,
net-anomalous dispersion lasers show no dark solitons (as shown in our soliton laser
simulation in Fig. 2.9).

Experimental observation of these effects should be possible, given our simulations are
based on real fibre parameters, although this will be challenging due to the transient non-
periodic nature of the process, requiring single-shot picosecond-resolution measurements.
Practically, our observations could be useful when considering applications of normal-
dispersion mode-locked lasers, as this defines the expected start-up time required for the
laser to reach a stable output.

The work in this section, however, was principally driven by curiosity and fundamen-
tal interest. It is notable that well-established dark soliton interactions in conservative
systems [Thu91] are qualitatively maintained in our simulations of a novel dissipative
system. The recirculation of light in fibre resonators offers a unique opportunity for
exploring long-range soliton interactions by periodically sampling the optical field once
per round-trip [Jan13]. In particular, mode-locked lasers – where a near constant bright
pulse background is maintained by the restoring forces of the system – offer a suitable
environment for studying dark soliton evolution, and their interactions.

As the NLSE underpins a variety of nonlinear dispersive systems, such studies could
also offer insight into other fields. One area which is currently receiving particular
academic interest is the analogy between fibre-optics and Bose-Einstein condensates
(BECs) [Pro04]. A BEC is a state of matter at almost absolute-zero temperature, where
the reduced thermal energy forces many atoms to occupy the lowest quantum state,
enabling the observation of quantum mechanical phenomena on macroscopic length
scales (e.g. superconductivity) [Bos24, Ein24]. The NLSE describes the wavefunction of
the condensate, including the atomic density and phase, rather than the electromagnetic
field envelope used in optics. Under conditions of a dilute atomic gas (such that the
nonlinearity in a BEC resembles a Kerr-type nonlinearity) and confinement to a 1D atomic
system, there are strong parallels between the two systems [Pro04].
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3.6 Summary

Dark soliton matter-waves have been observed experimentally in BECs, where they
can be a useful diagnostic for probing mesoscopic physics in ultracold gases [Fra10];
however, they have also been shown to be thermodynamically unstable, resulting in
their eventual decay [Bec08, Fra10]. Additionally, soliton-soliton collisions have been
observed to contribute to the decay mechanism [Bec08, Hua01], in analogy with the
dynamics during laser radiation build-up we report here. We thus suggest that mode-
locked fibre lasers could prove a useful platform for improving understanding of dark
soliton interactions, with applicability to other dissipative systems.

Further work is required to evaluate the strength of the analogy, but if validated, this
suggests that mode-locked lasers could be used to aid understanding of the dynamics
and stabilisation of dark solitons, offering valuable insight for advancing studies of
macroscopic quantum phenomena in BECs.

3.6 Summary

In this chapter we have presented a long-cavity laser architecture as a route to generating
high-energy short pulses at low repetition rates. We demonstrated that near-kilometre
length mode-locked cavities could produce stable nanosecond pulses at kilohertz repeti-
tion rates. The cavity length and choice of fibre nonlinearity and dispersion were found to
enable variation of the output pulse duration and repetition frequency, suggesting that
this is a flexible design for achieving a wide range of short-pulse laser parameters. Such
pulses also possessed a giant linear chirp. While the magnitude of this chirp rendered
classic compression techniques (such as using bulk diffracting pair gratings) impractical,
we were able to demonstrate chirp compensation using a custom-engineered chirped fibre
Bragg grating for ∼100 times compression to produce ultrashort pulses.

Could compressed long-cavity lasers be commercially-attractive high-energy pulse
sources? The design is well-suited for chirped pulse amplification – which can be achieved
by simply including an amplifier before the CFBG since the generated pulses are highly
chirped – and as an all-fibre system, the laser could be conveniently packaged as a compact,
robust device. Polarisation-maintaining fibre could also be used for environmental stability.
However, the tightly-confined guided nature of light in fibre is also a major limitation. The
compressed 125 nJ energy, 10 kW peak-power pulses in our experiment corresponded to a
nonlinear length of less than 0.1 m in Flexcore fibre. This indicates that strong nonlinear
effects could emerge over short distances such as the fibre pigtails of the circulator, limiting
the pulse quality and spectral density of the final output as the power increased further.

Therefore, in order to access higher output powers without deleterious nonlinear effects,
it will be necessary to use large mode area fibres which exhibit a significantly lower
nonlinear parameter by spreading the light over a larger effective area. This approach
has already been demonstrated for 0.5 µJ pulse generation with a ∼50 m cavity [Chi11],
and we believe that further cavity elongation could yield even higher pulse energies and
output powers. The precise CFBG specification and rapid deterioration of pulse quality of
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Chapter 3 Long-Cavity Mode-Locked Lasers

compressed duration when deviating from it could also present practical problems for
developing a monolithic long-cavity laser system. However, despite these limitations we
were able to demonstrate that our system is a suitable pump source for low-threshold
supercontinuum generation in PCF. The resulting system was a compact and relatively
low-cost broadband fibre source, ideal for optical characterisation of devices.

Finally, we note that numerical modelling played an important role in this chapter,
successfully simulating the output of the long-cavity laser, CFBG compression and prop-
agation of these pulses in a PCF for supercontinuum generation. In addition to helping
to guide the design process, such modelling provided additional insight into the under-
lying nonlinear optical physics. We observed persistent dark soliton structures as the
pulses formed from noise in our simulations and considered their impact on the start-up
dynamics of long-cavity mode-locked lasers. Further experimental work to verify their ex-
istence in the first few milliseconds of radiation build-up is challenging, but an interesting
prospect to gain further insight into the nonlinear dynamics of mode-locked fibre lasers,
with analogues to other nonlinear systems in nature.
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4
FEW-LAYER TRANSITION METAL

DICHALCOGENIDES

Materials science underpins the development of lasers and other photonic devices, yet
simultaneously presents major limitations to their performance. Numerous optical proper-
ties must be considered in the design of such systems and the choice of materials involves
a balance between their characteristics and practical aspects such as cost, scarcity and ease-
of-fabrication; a compromise is usually made as every material possesses both advantages
and disadvantages for a given application. Therefore, advances in materials science offer
new opportunities for optical applications.

In this chapter, we consider few-layer transition metal dichalcogenide (TMD) nanomaterials
and their prospects for nonlinear photonics. Historical developments and the optical
properties of nanomaterials are briefly reviewed in Section 4.1, followed by an introduction
to few-layer molybdenum disulfide (MoS2) – the primary material we investigate in this
chapter. In Section 4.2 we report a microscopy technique exploiting second- and third-
harmonic generation for high-resolution imaging of few-layer MoS2 and determination
of the nonlinear optical characteristics. The exploitation of these properties to develop
short-pulse fibre lasers using MoS2 at a variety of wavelengths is described in Section 4.3,
and the mechanism of wideband saturable absorption is discussed in the context of edge
states. Finally, other TMD nanomaterials are considered in Section 4.4, including reports
of Q-switched lasers using MoSe2, and the chapter is concluded with a critical discussion
of the opportunities for such nanomaterials in photonic systems in Section 4.5.

Results presented in this chapter have been published in the following journal arti-
cles and conference proceedings: [Woo14a, Woo15b, Woo15c, Woo14f, Zha15, Woo15a,
Woo15d, How16].

115



Chapter 4 Few-Layer Transition Metal Dichalcogenides

4.1 Introduction: Optical Properties of Nanomaterials

The word ‘nanomaterial’ is a broad term for describing low-dimensional materials with
one or more characteristic lengths of nanoscale dimensions (typically <100 nm) and size-
dependent properties, as introduced in Section 1.6. As a family of materials, they exhibit
many interesting characteristics due to quantum confinement effects, which are not offered
by conventional 3D bulk materials. From an applications point of view, one-dimensional
(1D) nanotubes and two-dimensional (2D) nanosheets have attracted the most interest.

4.1.1 Carbon Nanotubes

The explosion of interest in nanomaterials on a global scale, which continues to the
present day, was arguably initiated by Sumio Iijima’s fabrication of ‘helical microtubules
of graphitic carbon’, reported in 1991 [Iij91].1 These 1D structures were multi-walled
carbon nanotubes, consisting of numerous sheets of sp2-bonded carbon atoms rolled-up
into cylindrical tubes of gradually increasing diameter.2 Tubes of only 1 nm diameter
(consisting of a single sheet), known as single-walled carbon nanotubes, were reported
shortly afterwards [Iij93, Bet93].

Sheets of carbon atoms have a honeycomb structure and the angle at which the sheet is
rolled to form a tube determines the electronic properties of the material. This is described
by the chiral vector c, which connects any two points on the single sheet lattice that become
coincident when rolled [Won11]:

c = na1 + ma2 (4.1.1)

where a1 and a2 are in-plane unit vectors and n and m are positive integers coordinates of
the 1D unit cell. These two integers determine the circumference of the tube |c| and thus,
the diameter d:

d =
|c|
π

=
a
√

n2 + nm + m2

π
(4.1.2)

where a = 0.246 nm is a constant related to the lattice [Won11]. The resulting structure
is described as an (n, m) carbon nanotube, as illustrated in Fig. 4.1a. If |m− n| is exactly
divisible by three, the nanotube exhibits metallic behaviour. Otherwise, the material
is a semiconductor with a direct bandgap. The 1D nature of the material gives rise to

1However, following this work, re-examination of earlier literature revealed reports of hollow carbon
tubes with <50 nm diameter synthesised as far back as 1952 [Rad52]. We shall see in this chapter that
‘rediscovery’ appears to be a persistent theme within the history of nanomaterials. Perhaps this is not
surprising as the pioneering reports of low-dimensional structure fabrication lacked the high-resolution
characterisation tools to thoroughly study their novel properties and consequently, the materials were not
exploited for practical applications. However, these reports offered significant insight and were a major
contribution to the field; where possible, we include references in this section to both the original authors
in addition to the more recent studies which have extended their work.

2It should be noted, however, that nanotubes are not fabricated physically be rolling up 2D sheets. A
variety of fabrication techniques exist including electric arc discharge, laser ablation and chemical vapour
deposition [Jou98].
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4.1 Introduction: Optical Properties of Nanomaterials

Van Hove singularities in the electronic density of states, resulting in numerous possible
optical transitions, where the lowest transitions are labelled E11 and E22 [Wil98, Avo08].
Additionally, the gap energies of transitions, which define the optical absorption, are
determined by the tube diameter, which can be expressed visually in a Kataura plot
(Fig. 4.1b) [Kat99].

Nanotubes may be grown with random distributions of chiral vectors leading to a
distribution of metallic and semiconductor behaviour, and broadband absorption due to
a distribution of tube diameters. However, by careful control of the growth conditions,
the distribution of tube diameters can be reduced to a desired range, enabling control of
the direct bandgap of the material for particular optoelectronic applications. Additionally,
after photoexcitation, ultrafast carrier dynamics have been reported including relaxation
within 100 fs [Ma04].
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Fig. 4.1: Single-walled carbon nanotubes: (a) Schematic showing the chiral vector for a
semiconducting (3,2) tube, visualised as a rolled-up planar sheet of atoms; (b) Kataura
plot showing the relationship between tube diameter and bandgap for various semicon-
ducting tube transitions. The lowest two transitions are labelled E11 and E22. Adapted
from Ref. [Kat99].

4.1.2 Graphene

The properties of the aforementioned ‘unrolled’ 2D sheets of carbon atoms have also
been considered as a material in their own right, known as graphene. Early works
theoretically studied graphene sheets in the context of understanding the properties of
3D carbon allotrope graphite, which consists of stacked graphene layers held together by
weak van der Waals forces [Wal47].3 Literature reports also documented observations
of few-layer graphite, although the limited microscopy techniques available at the time
prevented thorough characterisation of these samples [Rue48, Boe62]. The first fabrication
of stable single-layer graphene sheets is attributed to Geim and Novoselov, after their

3It was not until 1986 that the term graphene was introduced by Boehm, Setton and Stumpp as a combination
of the word graphite and the suffix -ene [Boe86].
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infamous 2004 demonstration of micromechanical exfoliation of graphite using Scotch
tape [Nov04]. This was closely followed by their award of the 2010 Nobel Prize for Physics
for “groundbreaking experiments regarding the two-dimensional material graphene”.

Graphene is a zero-bandgap semi-metal. Electrons in the material exhibit a linear rela-
tionship between energy and momentum, behaving as massless Dirac fermions (Fig. 4.2
shows the band structure at the crystal K point) [Nai08]. Ultrafast carrier dynamics have
also been reported: pump-probe spectroscopy has revealed a rapid intraband carrier
equilibration of <30 fs [Bre09].

The 2D nature and zero bandgap of graphene result in frequency-independent absorp-
tion from the visible to near-infrared spectral region with a value of 2.3%, determined
by the fine-structure constant (a fundamental physical constant) [Nai08]. Consequently,
for any optical excitation in this range (i.e. any incident wavelength), there is always an
electron-hole pair in resonance, enabling broadband optical operation. Outside this region,
a van Hove singularity in the density of states causes an absorption peak at ∼270 nm and
beyond ∼2500 nm, thermal occupancy and intraband transitions impact upon the optical
spectrum [Mak08]. However, while wideband optical absorption from the zero bandgap
is one of graphene’s greatest strengths, the lack of bandgap is also simultaneously the
greatest weakness, making it challenging to turn graphene-based devices ‘off’ and to fully
control them electronically.

K point

Energy, E

Momentum, k

Zero
BandgapConduction

Band

Valence
Band

Fig. 4.2: Electronic band structure of graphene, showing the linear dispersion of electrons.

4.1.3 Few-Layer Transition Metal Dichalcogenides

While work continues to understand and exploit the properties of graphene for practical
devices, there is also great interest in exploring other 2D materials. Researchers are
therefore considering other layered crystal structures for the fabrication of monolayer (2D)
and few-layer (quasi-2D) crystals, which could possess superior optical and electronic
properties to the bulk 3D material.
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Transition metal dichalcogenides (TMDs) are a family of more than 40 layered materials,
with MX2 stoichiometry. The layers consist of a single plane of hexagonally-arranged
transition metal (M) atoms (e.g. molybdenum Mo, tungsten W) covalently bonded be-
tween two hexagonal planes of chalcogen (X) atoms (e.g. sulfur S, selenium Se), where
the layers themselves are weakly bound together by van der Waals forces (Fig. 4.3a)
[Wil69].4 The electronic structure of TMDs is shaped by orbital hybridisation and occu-
pation, thus depending on the position of the constituent elements in the periodic table
and the electron count. Furthermore, TMDs can exhibit a variety of polymorphs (different
crystal structures) such that the stacking arrangement affects the characteristics of a given
material.

A diverse range of properties are offered by TMDs, including metallic (e.g. NbS2),
semiconducting (e.g. MoS2) and insulating (e.g. HfS2) behaviour. Additionally, monolayer
and few-layer forms of TMDs have been exfoliated and found to possess distinct thickness-
dependent optoelectronic properties, opening new opportunities for photonic applications
and exploration of low-dimensional physics.

Recently, the TMD molybdenum disulfide (MoS2) has received particular attention, in
part due to its availability from naturally occurring molybdenite [Gan14].5 Monolayer
and few-layer MoS2 is the primary focus of this chapter, although many of the conclusions
are expected to apply to other semiconducting TMDs.

Monolayer and Few-Layer MoS2

Bulk MoS2 exhibits two polymorphs: trigonal prismatic (2H and 3R phases6) which results
in filled orbits and indirect-gap semiconducting behaviour; and a metastable octahedral
phase (1T) with partially-filled orbits, providing metallic characteristics. Naturally occur-
ring MoS2 is 2H, which is the focus of our discussion as the 1T phase is not stable and
reverts to 2H under high temperature or pressure [Chh13].

Weak interlayer van der Waals forces enable facile exfoliation of MoS2 layers. This
changes the coupling between layers, the degree of quantum confinement and symmetry
properties, which strongly alter the electronic structure.

Reports of few-layer MoS2 and observations of their thickness-dependent properties
first appeared in the literature many decades before the graphene-led renaissance in 2D
materials. In 1963 Frindt and Yoffe studied the optical properties of thin (<10 nm thick)
MoS2 crystals, later identifying new features in the absorption spectrum of few-layer
MoS2 flakes (mechanically exfoliated with adhesive tape) [Fri63, Fri65, Fri66]. Reports of
monolayer exfoliation using lithium-based intercalation techniques were also published
[Joe86]. However, these early studies were limited by the instrumentation and techniques

4Each layer here consists of three planes of atoms. While this could be referred to as a tri-layer, it is more
common to define the structure as a single layer or monolayer – a terminology we adopt herein.

5Bulk MoS2 already plays a role in industry, commonly being used as a commercial lubricant and catalyst.
6The numbers correspond to the number of layers in the unit cell and H, R and T are the symmetry:

hexagonal, rhombohedral or trigonal.
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Fig. 4.3: MoS2 structure: (a) visualisation of three-layer MoS2; (b) simplified energy
structure for monolayer MoS2 showing the relationship between the electronic bandgap
Eg, the excitonic binding energy Eb and the optical bandgap Eo.

available for characterisation and neither the nonlinear optical properties of few-layer
MoS2 nor the technological benefits were exploited.

More recently, renewed interest in low-dimensional forms of MoS2 followed reports
in 2010 of a transition from indirect to direct bandgap behaviour with a reduction in
layer count and many orders of magnitude (104) greater photoluminescence [Mak10].
Experimental studies have confirmed that bulk MoS2 has an indirect ∼1.29 eV (961 nm)
bandgap, which increases due to quantum confinement as the number of layers is reduced,
eventually becoming a direct 1.80 eV (689 nm) badgap for an isolated monolayer. An
additional result of the reduced dimensionality is the emergence of strong excitonic effects.

To understand the optical properties of MoS2, it is necessary to consider the role of
excitons, which we now discuss. In a semiconductor, photoexcitation places an electron
into the conduction band, leaving a hole in the valence band. The attractive Coulombic
interaction between the electron and hole can create a bound-state quasiparticle known as
an exciton. If the electron-hole interaction is weak (e.g. due to long-distance separation
or dielectric screening) or if the photoexcitation energy is great, this attraction can be
overcome, resulting in free carriers (unbound electrons and holes).

Excitons can therefore be considered as the lowest energy electronic excitation in a
semiconductor: the energy required to create an exciton by optical absorption is less than
the threshold for creating free carriers. Hence, excitons can be represented as an energy
level just beneath the conduction band on an energy level diagram (Fig. 4.3b).7 This leads
to two definitions of the bandgap: the electronic bandgap (or transport bandgap) Eg, which

7Strictly, this is incorrect. The typical semiconductor band structure, including a conduction band and a
filled valence band as the ground state, is a one-electron picture. Excitons, however, are two-particle states:
the ground state here contains no electron-hole pairs and hence is the origin in a two-particle picture, which
does not include conduction or valence bands [Yu10]. However, we feel the simplified hybrid energy
structure in Fig. 4.3b does help to visualise the relative energies of free carriers and excitons, and shows
the different bandgap definitions.
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Fig. 4.4: Quasiparticle band structure of (a) bulk and (b) monolayer MoS2, highlighting
the indirect-to-direct gap transition. The labels Γ, M and K are high-symmetry points of
the crystal lattice. Adapted from Ref. [Che12], where the band structure was calculated
using quasiparticle self-consistent GW theory.

defines the energy needed to inject free electrons and holes into the material, and the
optical bandgap Eo, which is the required energy for a photon to be absorbed. The energy
difference is known as the exciton binding energy: Eb = Eg − Eo [Kas06].

In classical inorganic semiconductors, electron-hole interactions are weak due to dielec-
tric screening, yielding a small (< 10 meV) exciton binding energy and any generated
excitons are rapidly ionised by collisions with optical phonons (lattice vibrations). Conse-
quently, their effect is not observed experimentally (unless cooled to low temperatures)
and the distinction between electronic and optical bandgap is neglected [Yu10].

For low-dimensional materials such as few-layer MoS2, however, quantum confinement
enhances the electron-hole Coulombic interaction and reduces the dielectric screening since
the electric field induced by electron-hole pairs extends beyond the material. Consequently,
large excitonic binding energies (>100 meV) have been measured and these transitions
shape the absorption spectrum and carrier dynamics at room temperature. Our interest
in MoS2 is for photonic devices and in the following discussion, we thus use the term
bandgap to describe the optical gap.

Many researchers have constructed numerical models for calculating the band structure.
Strongly bound excitons and the need to consider many-body effects complicate these
simulations and debate continues in the literature relating to interpretations of many
existing theories concerning this problem. There is agreement, however, regarding the
origin of the transition from indirect to direct gap behaviour, as shown by a typical
computed band structure in Fig. 4.4.

Bulk MoS2 has an indirect bandgap with a valence band maximum at the Γ point and
a conduction band minimum at the midpoint of Γ-K. A direct, although higher energy,
excitonic transition exists at the K point. As the layer count is reduced, the indirect gap
increases while the direct gap is almost unchanged. At monolyer thickness, the direct
energy gap is smaller, thus becoming the (optical) bandgap of the material.
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Finally, we note that Fig. 4.4 shows a split valence band, which occurs in monolayer
MoS2 due to spin-orbit coupling. This yields two strong excitonic transitions, commonly
labelled A and B, which we also show in the simplified band structure in Fig. 4.3.

4.2 Nonlinear Microscopy for Material Characterisation

Two-dimensional material fabrication techniques often produce a distribution of small
flakes of the material, with different sizes and thicknesses (i.e. number of layers). Since
the electronic structure and optical properties of few-layer materials are affected by their
size, it is important to identify and characterise the properties of flakes before they can
be successfully integrated into devices. Conventional optical microscopy enables the
determination of flake positions on a substrate, where contrast is obtained from variations
in the linear refractive index and linear absorption coefficient of materials that govern the
transmission and reflection coefficients. The contrast can be low, however, for materials
with similar indexes and no information is recorded regarding the flake’s nonlinear
characteristics.

To obtain such information, nonlinear optical microscopy can be used, where a sample
is excited with high-intensity light and one or more nonlinear effects are recorded to
spatially map the sample’s nonlinear response [Gan78, Hel74, Bar97]. This technique
offers high spatial, spectral and temporal resolution and enables nondestructive in-situ
characterisation.

High intensity pump sources for nonlinear microscopy are typically achieved using a
high-peak-power short-pulse pump source, focussed onto a small area; an image of a large
sample can then be obtained by raster scanning the focussed spot across the sample and
recording the harmonic intensity at each point (i.e. pixel). Such microscopy techniques are
being enabled by progress in ultrafast laser development, offering high peak power pulses
but maintaining relatively low average powers to avoid thermal damage to samples.

A variety of nonlinear effects can be used such as harmonic generation, coherent anti-
Stokes Raman scattering and two-photon absorption/fluorescence, depending on the
material under investigation and the characteristics to be measured. In this section, we
consider harmonic generation, which can be achieved with a single pump source and
relatively simple optical setup, enabling rapid assessment of a material’s properties for
applications including wavelength conversion and pulse characterisation. Experiments in
this section were undertaken during a placement with MackGraphe, Mackenzie Presbyte-
rian University, Brazil in May 2015.8

8I am grateful to Profs Christiano de Matos and Thoroh de Souza for supervising this placement, and
Drs Rafael de Oliveira, Ciaran Phelan and Robbie Murray for fruitful discussions and support when
conducting the experiments and analysing the data.
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4.2.1 Introduction to Harmonic Generation

Generation of light at the nth harmonic frequency of a fundamental (pump) wave arises
from the nth order nonlinear susceptibility χ(n) of a material. Under intense illumination,
the pump excites a nonlinear polarisation wave in the material, consisting of electric
dipoles oscillating at n times the fundamental frequency. These dipoles then radiate
according to Maxwell’s equations, emitting an electromagnetic field at the harmonic
frequency.

This process can also be understood quantum mechanically in terms of photon-induced
transitions of electrons between the ground state and virtual states. Under incident light, a
photon can excite an electron to a higher-energy virtual level. It should be stressed that
these are virtual-state transitions and are not related to physical absorption processes or
real energy levels in the material’s electronic structure. The lifetime of virtual states is
essentially equal to the pump pulse duration, resulting in a rapid energy decay to the
ground state, generating a photon at the same energy as the pump. However, under
intense illumination, multiple photons can excite electrons into even higher-energy virtual
states. Therefore, the transition back to the ground state re-emits a single photon with
a greater energy. The processes of second-harmonic generation (SHG) and third-harmonic
generation (THG) are shown schematically in Fig. 4.5.

Pump
Energy, Ep

Virtual Energy
Levels

Third Harmonic GenerationSecond Harmonic Generation

Ground State

SHG
(2Ep)

Pump
Energy, Ep

THG
(3Ep)

Fig. 4.5: Schematic illustration of second and third harmonic generation, involving elec-
tron transitions between the ground level and virtual states.

Harmonic generation is a phase-sensitive nonlinear process. The induced dipoles have a
fixed phase relative to the well-defined phase and amplitude of the pump wave. For high
conversion efficiencies, the dipoles must radiate in phase to ensure that the contributions
from all dipole positions along the material (often on millimetre length scales for bulk
crystals) add constructively. Therefore, phase matching is required. There are numerous
strategies for achieving a fixed phase relationship between pump and harmonic waves
(to yield zero wavenumber mismatch: ∆k = 0), exploiting the use of crystal birefringence
or periodic poling. However, two-dimensional nanomaterials are only a few atomic
layers thick, precluding phase-matching for normal-incidence illumination as the material
thickness is hundreds of times smaller than the wavelength (and thus less than the
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coherence length for the process).
For the Taylor expansion of the electric susceptibility to converge, it is expected that

nonlinear susceptibilities χ(n) will generally decrease with increasing order n, suggesting
that lower-order nonlinear effects should be more easily observed [Boy07]. However,
SHG can only occur in media which lack inversion symmetry.9 For layered nanomaterials,
their centrosymmetry is determined by the parity of the layer count. Hence, for MoS2

flakes with an even number of layers, there will be negligible SHG [Li13]. All materials
exhibit a non-vanishing χ(3), however, suggesting that third-harmonic microscopy is a
technique that could be widely applied, providing sufficient excitation intensities and
sensitive detection systems are available.

4.2.2 Harmonic Generation from Surfaces

Shortly after Peter Franken’s first observation of SHG [Fra61], Bloembergen and Pershan
realised the importance of boundary conditions in nonlinear media for harmonic genera-
tion, formalising the theory of nonlinear optics at interfaces [Blo62]. Specifically, it was
noted that the broken symmetry at a material boundary results in a different nonlinearity
for the surface and bulk. For example, at the interface between two materials (e.g. air
and a solid object), structural discontinuity permits electric-dipole effects at the surface
even if these were forbidden in the bulk [Blo68]. Therefore, bulk materials possessing
inversion symmetry were demonstrated to radiate SHG from surfaces [Bro65]. Material
surfaces can thus be treated as a thin layer with distinct nonlinear optical properties to
the bulk [She89]. As understanding of surface nonlinear optics developed, it was realised
that harmonic generation was an ideal tool for high-resolution surface analysis, which
remains widely used to this day for characterising growth on substrates and for surface
spectroscopy [She86, She00].

Following this discussion, a question arises regarding nonlinear optics in monolayer
and few-layer nanomaterials: should they be treated using a bulk model or as a surface,
due to their 2D dimensionality? We discuss this further in Section 4.2.6.

Finally, we note that harmonic generation has recently been reported from MoS2 by other
researchers: SHG was demonstrated from both monolayer and few-layer crystals [Li13,
Kum13] and THG was observed from 10-15 atomic layers of the material [Wan14a]. We
extend this work by studying THG in both monolayer and few-layer MoS2 samples and
discuss how THG can augment the capabilities offered by SHG microscopy.

4.2.3 Monolayer and Few-Layer MoS2 Fabrication

Before presenting our nonlinear microscopy experiment and results, we briefly discuss
techniques for obtaining the 2D forms of MoS2 used in this work. Few-layer fabrication

9This well-known principle can be explained as follows. The nth-order polarisation term is Pn = ε0χ(n)En

and under inversion symmetry, the sign of Pn should change when E changes sign. However, for even
n, this statement can only be true if χ(n) = 0. Consequently, if a crystal is centrosymmetric, even-order
nonlinear effects are electric dipole forbidden.
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methods can be broadly separated into two categories: top-down exfoliation and bottom-
up growth. Exfoliation involves cleaving monolayer or few-layer flakes from a bulk crystal,
typically achieved mechanically (e.g. using Scotch tape), chemically (e.g. lithium-based
intercalation) or through dispersion in solvents (known as liquid-phase exfoliation, LPE).
Alternatively, growth techniques such as chemical vapour deposition (CVD) can produce
layers of the material on a substrate, from carefully controlled chemical reactions between
solid precursors [Wan12a].

Mechanical exfoliation is widely used in research environments for producing high-
quality single-crystal flakes, although the low yield and poor scalability render it unsuit-
able for practical large-scale exploitation. For real-world applications, CVD growth or
LPE are more promising, where CVD typically produces large single-layer flakes (up to
tens of µm across) and LPE yields smaller few-layer samples (hundreds of nm across).

For harmonic generation, we initially considered CVD-grown monolayer flakes to
establish the technique and then extended our experiments to few-layer crystals obtained
from mechanical exfoliation. Later in the chapter in Section 4.3, we report the study of
nonlinear absorption in LPE-fabricated few-layer MoS2 and discuss why the small flake
size is advantageous for saturable absorber applications.

Chemical Vapour Deposition

Monolayer MoS2 flakes were produced by chemical vapour deposition on a substrate
consisting of silicon (Si) with a ∼300 nm silica (SiO2) coating layer.10 The substrate was
carefully cleaned (by ultrasonication in acetone and washing with water) before placing
it in a furnace with 14 mg MoO3 and 120 mg sulfur at atmospheric pressure. Over a
period of 75 minutes the furnace temperature was varied between 105◦C and 700◦C. At
high temperatures, sulfur vapour reduced the MoO3 power to form volatile MoO33-x

compounds, which diffused towards the substrate and further reacted with the sulfur
vapour to form a thin film layer of MoS2. Samples were then characterised by Raman
microscopy and atomic force microscopy (AFM) to verify the growth of high-quality MoS2

monolayers (the use of these microscopy techniques to determine the number of layers is
explained in detail in Section 4.3.2). Further details of the fabrication and characterisation
of this sample are reported in Ref. [Sch14].

Mechanical Exfoliation

Few-layer MoS2 samples were fabricated by mechanical exfoliation of large bulk crystals
of the material (obtained from Graphene Supermarket).11 Briefly, a piece of Scotch tape
was pressed into the bulk crystal and peeled off, overcoming the weak interlayer van
der Waals forces to remove thin layers of the material. This was followed by further

10We thank Dr Shisheng Li and Prof. Goki Eda from the Centre for Advanced 2D Materials (CA2DM),
National University of Singapore for fabrication of the CVD-grown samples.

11We thank Eduardo Aiub, Dr Indayara Martins and Prof. Lucia Saito from MackGraphe, Mackenzie
Presbyterian University for preparing the mechanically exfoliated samples.
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applications of the adhesive tape to cleave layers from the thin crystals until single and
few-layer samples remained. The exfoliated flakes were then transferred to a silicon
substrate with a ∼300 nm silica coating layer and characterised using Raman microscopy
and AFM to determine the layer count. Further details of this fabrication procedure are
reported in Refs [Mak10, Li14].

4.2.4 Experimental Microscope Setup

A reflective imaging system was developed to enable simultaneous linear optical mi-
croscopy and nonlinear harmonic generation microscopy, as shown in Fig. 4.6.

The linear microscope section included a green (∼530 nm) LED illumination source and
the detector was a charge-coupled device (CCD) camera with 1280×1024 pixel resolution.
The emitted LED light was collected by a 20 mm focal length aspheric condenser lens
and focussed onto the sample by a 20×microscope objective. The reflected light from the
sample was imaged onto the CCD camera by the combination of the microscope objective
and an infinity-corrected tube lens (200 mm focal length), after a 50:50 beamsplitter.

Nonlinear imaging was achieved by exciting the sample with 153 fs full width at half
maximum (FWHM) Gaussian-shaped pulses from an ultrafast mode-locked fibre laser
(Toptica FemtoFiber FFS), operating at 1560 nm with a repetition rate of 89 MHz (Fig. 4.7).
An isolator was included after the laser to prevent destabilisation from back-reflections
and a variable neutral density (ND) filter was included to vary the power. As light after
the isolator was linearly polarised, a half-wave plate (HWP) and quarter-wave plate (QWP)
were used to control the state of polarisation incident on the sample. The 1560 nm pump
light was tightly focussed (after reflection from a pellicle beamsplitter) by the microscope
objective to a Gaussian-shaped spot on the sample with 3.6 µm beam diameter (1/e2

width, obtained by a knife-edge measurement). This spot size was limited by the available
lenses, although it should be possible to obtain a diffraction-limited spot size to further
improve the microscope resolution. The sample was positioned at the focus, mounted on
a piezo-controlled translation stage to enable automated raster scanning of the focussed
beam over a large area.

Harmonic light (at both second and third harmonic frequencies) was generated in
reflection, collimated by the microscope objective and transmitted by the pellicle beam-
splitter. By changing the position of a flip mirror, the harmonics could be imaged onto the
CCD camera or coupled into a multimode fibre (62.5 µm core diameter) connected to a
spectrometer (WITec UHTS 300, including a single 600 lines per mm grating and a CCD
detector cooled to -60◦C).

The camera enabled simultaneous imaging of the linear optical image showing the
entire illuminated sample and the harmonic signal from a focussed illuminated spot on
the sample. With careful alignment, the image from the CCD camera showed the position
of the harmonic from the sample, overlaid on the full linear image, enabling regions of the
sample to be identified and their nonlinear response to be probed.
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Fig. 4.6: Schematic of linear and nonlinear microscope. When the flip mirror was moved
into position, the reflected harmonic was coupled into a multimode fibre (shown by the
dotted line) and measured on a spectrometer. Both second and third harmonics could be
generated, with collinear paths; we show only the third harmonic here for clarity.
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Fig. 4.7: Pump laser characterisation: (a) optical spectrum; (b) autocorrelation trace. Data
courtesy of MackGraphe.
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Imaging Results

Initially, we imaged the CVD-grown MoS2 monolayer flakes. The green LED-illuminated
microscope image (Fig. 4.8) showed isolated MoS2 monolayers on a Si substrate. The
contrast was poor, although it was possible to distinguish faint isolated triangles corre-
sponding to MoS2 monolayers, as shown in the magnified inset. This triangular shape
mirrors the crystal symmetry in the trigonal prismatic structure of 1H monolayer MoS2

[Chh13].

Third
Harmonic

MoS2
Monolayer

20 μm

Fig. 4.8: Microscope image showing the third harmonic at the laser focal position over-
laid on the linearly illuminated wide-area sample of MoS2 monolayer islands on an Si
substrate, imaged on a CCD camera (shown magnified in the inset). The contrast of linear
optical imaging was poor, highlighting the benefit of alternative microscopy techniques.

With an incident power on the sample of∼6.5 mW, the pulse peak power was∼450 W,12

corresponding to a peak intensity of 8.8 GW cm−2 when focussed to a 3.6 µm diameter
spot.13 The focal spot was moved across the sample using the piezo-controlled translation
stage and a bright green spot was observed when the pump beam was incident on an MoS2

monolayer (Fig. 4.8 inset). This was the third harmonic of the pump beam. Otherwise,
with the pump beam incident on the silicon substrate, no third harmonic was observed on
the CCD camera.

By adjusting the flip mirror, the reflected signal was measured on a spectrometer. A
strong third harmonic was recorded, centred at ∼522 nm with a spectral FWHM of 4.8 nm
(Fig. 4.9a). The greater sensitivity of the spectrometer compared to the CCD camera also
enabled measurement of the THG signal from the substrate, although this was ∼150 times
weaker than from the MoS2. This confirms relatively strong third-harmonic generation in
monolayer MoS2 and we neglected the substrate contribution in our subsequent analysis.
A second harmonic signal was also measured at ∼782 nm, with 10.2 nm spectral width
(Fig. 4.9b). While bulk MoS2 possesses inversion symmetry, prohibiting χ(2) processes, the
symmetry is broken for monolayer and odd numbers of few-layer flakes, allowing second-

12Computed using peak power = S × average power × (pulse duration × repetition rate)−1, where shape
factor S = 0.94 for Gaussian pulses.

13We use the definition: peak intensity = 2× peak power × (π× beam radius2)−1. The factor of two arises
as our beam is Gaussian, with a higher intensity at the centre than in the wings. In the literature this
factor is occasionally erroneously omitted or not explicitly mentioned. This can make direct comparison
of computed values between published reports difficult.
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Fig. 4.9: Spectra of (a) third and (b) second harmonic light generated in a CVD-grown
MoS2 monolayer and from the Si substrate, under 1560 nm pump excitation.
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Fig. 4.10: Third-harmonic image of MoS2 monolayers on Si substrate: (a) original image,
raster scanned with 0.4 µm step; (b) bilinear interpolated image.

order nonlinear effects [Li13]. A SHG signal was not measurable from the substrate,
however.

The spectrometer’s CCD detector measured intensity in counts per second. To determine
the power of the generated harmonic, we calibrated the system using a 650 nm laser diode
with a known intensity and a broadband white light source. The polarisation-dependence
of the optics was also taken into account.

To produce a high-contrast high-resolution image of the sample, generated harmonics
were measured by raster scanning the focussed spot (in 0.4 µm increments) across a wide
area and recording the spectrum at each position. The intensity value at each position
(i.e. the intensity of each pixel) was calculated by integrating over the harmonic spectrum,
after processing to remove the ambient light background level. We also confirmed that
the sample was not damaged and there was negligible change in the nonlinear response
under this illumination over a sustained period of many hours.

The resulting THG image is shown in Fig. 4.10, in addition to the image after bilinear

129



Chapter 4 Few-Layer Transition Metal Dichalcogenides

interpolation to improve its appearance (we adopted this processing for all subsequently
presented images). This was a significant improvement over the linear optical image,
clearly highlighting the position of the MoS2 monolayers on the substrate. We note that
a similar image could be obtained here using the second-harmonic; the benefit of using
the third harmonic becomes apparent later when imaging flakes with an even number of
layers.

4.2.5 Polarisation-Resolved Microscopy

Oscillating dipoles induced by the incident field radiate new fields with the same direction
as the material polarisation. Consequently, the relationship between the direction of
incident and nonlinearly generated fields (i.e. the state of light polarisation) can provide
further information about the electrical susceptibility and hence, the crystal structure of
sample [Boy07]. To treat the light polarisation mathematically, we consider the nonlinear
susceptibility as a tensor and briefly introduce point groups as a means of categorising the
symmetries of common crystallographic structures.

In the most general form, third-order nonlinear processes can be expressed as:

P(3) = ε0χ
(3) ... (E⊗ E⊗ E) (4.2.1)

where E and P(3) are the incident electric fields (which can each be different) and induced
third-order material polarisation vectors, respectively, χ(3) is a fourth-rank tensor for

the third-order nonlinear susceptibility, the notation
... indicates tensor contraction (inner

product) over three indices and ⊗ is the tensor product (outer product).
We simplify this by considering four interacting waves of the form ω1 + ω2 + ω3 = ω4,

expressed as a summation to describe the induced polarisation wave at frequency ω4 in a
particular direction [New11]:

Pi(ω4) = ε0 ∑
p

∑
jkl

χ
(3)
ijkl(ω4; ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3) (4.2.2)

where i, j, k, and l can each be x, y or z directions and ∑
p

indicates that the right-hand side

is summed over all permutations of ω1, ω2 and ω3.
For third harmonic generation (ω + ω + ω = 3ω), this reduces to:

Pi(3ω) = ε0 ∑
jkl

χ
(3)
ijkl(3ω; ω, ω, ω)Ej(ω)Ek(ω)El(ω) (4.2.3)

The χ(3) tensor contains 81 elements, although the majority of these are zero or degener-
ate due to symmetry operations. All crystallographic structures can be divided into only 32
groups based on their symmetry, known as point groups, which determine the directional
dependence of optical properties, in addition to whether the crystal exhibits birefringence
or inversion symmetry [Boy07]. Consequently, measuring polarisation-dependent optical
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effects permits analysis and identification of material samples, which could be a useful
tool for studying the impact of layer count on the crystal symmetry of 2D materials.

As an example study, we consider the THG dependence upon pump polarisation in
monolayer MoS2. A single layer of 1H MoS2 belongs to the D3h point group [Chh13].
According to standardised point group tables [Boy07], there are only 21 non-zero ele-
ments of the χ(3) tensor for D3h structures and since the pump light in our experiment
is incident perpendicular to the plane of the MoS2 layer, we neglect all elements in this
direction (z). Therefore, for the x and y axes in the plane of the monolayer, the salient
elements are: xxxx = yyyy = xxyy + xyyx + xyxy where xxyy = yyxx, xyyx = yxxy and
xyxy = yxyx [Boy07]. The notation xyyy is shorthand for the χ

(3)
xyyy element, governing

the generation of a wave polarised in the x direction arising from three waves polarised
in the y direction. We assume xxyy = xyyx = xyxy to simplify the mathematics since all
three pump photons are degenerate, making it impossible to distinguish between these
tensor elements in THG experiments. If the magnitudes are known, this procedure can be
used to calculate the generated harmonic power given an input intensity value. However,
in this case, our interest is in the direction of the vectors.

By evaluating Eqn. 4.2.3 for a pump wave with Ex = X, Ey = Y and Ez = 0, we find:

Px = X(X2 + Y2)

Py = Y(X2 + Y2)

Pz = 0

For a linearly polarised pump where X and Y are both real values, this indicates that
the induced material polarisation, and hence the radiated THG field, will have the same
optical polarisation state as the fundamental, with an intensity independent of the linear
polarisation direction. We confirmed this experimentally by removing the QWP and
rotating a HWP in the path of our pump light to rotate the linear polarisation; the direction
of the THG polarisation state was measured using a linear polariser. We observed that the
pump and THG light were always in the same polarisation state.

For a circularly polarised fundamental wave, e.g. Ex = 1, Ey = exp(iπ/2) and Ez = 0,
we find that the induced material polarisation is always zero:

Px = 1 + exp(iπ) = 0

Py = exp(iπ/2) + exp(3iπ/2) = 0

Pz = 0

This suggests no THG from a circularly polarised pump. We explored this experimentally
by rotating a QWP in the path of the linearly polarised 1560 nm beam and recording the
intensity of THG from monolayer MoS2 (Fig. 4.11). Theoretically, it can be shown that
the relationship between the THG intensity14 and QWP angle θ is cos3(2θ), based on the

14Intensity I is related to the square of the material polarisation: I ∝ E2
THG ∝ P2

x + P2
y + P2

z .
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Fig. 4.11: Polar plot of third-harmonic generation intensity in monolayer MoS2 as the
pump polarisation state is rotated from linear to circular by rotating a quarter wave plate.
Experimental measurements (dots) show that circular polarisation leads to zero third
harmonic generation, in good agreement with the expected behaviour for a D3h point
group crystal (solid line).

Jones matrix of a QWP and from Eqn. 4.2.3 with the D3h tensor elements. Good agreement
was observed between the experiment and theoretical expectations, showing a decrease in
THG intensity as the pump polarisation state changed from linear to elliptical to circular,
confirming that our MoS2 sample belonged to the expected point group.

Additional information can be provided by the polarisation dependence of SHG, deter-
mined by the χ(2) tensor (with up to 27 tensor elements, which are well-known for D3h

materials [Boy07]). In this case, for linearly polarised pump light, the second harmonic
fields in x and y directions are proportional to sin3θ and cos3θ, respectively, where θ is the
angle between the input polarisation and the crystallographic axis [Li13]. Consequently,
by recording nonlinear images of the SHG in both x and y directions (using a polariser)
from a large area sample of many MoS2 flakes, it is possible to process these images to
deduce the crystal orientation of each flake. We do not repeat such experiments here as
the technique has been thoroughly studied recently [Li13, Kum13, Yin14]. With regards to
circular pump polarisation states, SHG will be generated, unlike THG, and the harmonic
will be circularly polarised but of opposite handedness.

4.2.6 Determination of Nonlinear Susceptibility

To evaluate the performance of few-layer nanomaterials for nonlinear optical applications,
it is necessary to quantify the strength of their nonlinear response. This can be achieved
by calculating the magnitude of the nonlinear susceptibility tensor through measurements
of the generated harmonic powers for a known pump power.

As introduced in Section 4.2.1, Bloembergen, Pershan and Shen introduced extensive
theoretical work to describe surface nonlinearities [She86, Blo62]. They proposed that
interfaces could be considered as infinitesimally thin layers with a distinct dielectric

132



4.2 Nonlinear Microscopy for Material Characterisation

constant and nonlinear polarisation to the materials meeting at the interface. This model
for thin interfaces bears strong resemblance to the emerging class of 2D nanomaterials.
Consequently, we treated monolayer MoS2 as a nonlinear sheet at the interface between
air and the dielectric SiO2 substrate, including local-field correction factors (i.e. surface
transmission and reflection coefficients) to account for the boundary conditions.

A measured surface nonlinear response can include contributions from both the interfa-
cial sheet nonlinearity and the bulk nonlinearity of the air and substrate. For our analysis,
we assumed that the bulk nonlinearity of air and the SiO2 substrate was negligible com-
pared to the MoS2 layer (justified as the THG was ∼150 times weaker and SHG was not
measurable in SiO2, as shown in Fig. 4.9). Therefore, the measured surface nonlinearity
was assumed to arise solely from the MoS2 layer(s) as a nonlinear sheet. Pump depletion
was also assumed to be negligible since the conversion efficiency was low.

We derived expressions relating the pump power to the second and third harmonic
powers measured in back-reflection from the MoS2 sample. Our derivation followed the
work of Shen [She89], but formulated in SI units rather than using the Gaussian unit
system and extended to consider THG in addition to SHG.15

Radiating Sheet Polarisation

When light travelling in air (medium 1) is incident on a material (medium 2), a fraction of
the field will be reflected at the surface and the remaining light will be transmitted into it
(according to the Fresnel equations [Hec02]). If sufficiently intense, this field can generate
a nonlinear polarisation, which behaves as a polarisation sheet embedded in a dielectric
interface layer. This sheet of radiating dipoles then emits electric fields at harmonics of the
pump light, some fraction of which is transmitted back into medium 1.

A thorough mathematical treatment of the problem considers the angle at which light
meets the surface and the state of optical polarisation. In this case, the p and s coordinate
frame is a convenient approach for describing the oscillation direction of the field, as
illustrated in Fig. 4.12a. This relates electric field components to the plane of incidence which
contains the incident and reflected wavevectors (and is perpendicular to the surface):
p-polarised light has a field direction parallel to the plane of incidence, while s-polarised
light is perpendicular to it.16 The general expression for these field components from a
sheet polarisation of frequency ωs, emitted back into medium 1 is [She89]:

Ep(ωs) = i
k1

2ε1k2z

[
k2zLxxPx(ωs)x̂ + kxLyyPz(ωs)ẑ

]
exp(ik1 · r− iωst) (4.2.6a)

Es(ωs) = i
1

2ε1

[
k1LyyPy(ωs)ŷ

]
exp(ik1 · r− iωst) (4.2.6b)

15A variety of expressions exist in the literature for converting between Gaussian and SI units, and between
fields and intensities due to different approaches when defining the original field. Therefore, for consis-
tency and to ensure that the equations we derived could be related to physical properties, we note that the
SI units notation from Sutherland [Sut03] was adopted throughout.

16The letters s and p derive from German words ‘senkrecht’ (meaning perpendicular) and ‘parallel’.
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where subscripts m and h indicate the medium (m = 1, 2) and axis component (h =

x, y, z), respectively, for the wavevector kmh, dielectric constant εm and the nonlinear sheet
polarisation Ph induced at the interface. The dielectric constant is related to the material
refractive index by εm = ε0n2

m [Sut03]. Lhh is a local field correction factor accounting
for the different properties of each medium across the interface; physically, these are the
well-known transmission Fresnel coefficients [Hec02].

Fortunately, since our experiments were all performed at normal incidence to the sample
(along z), the Pz term was negligible and Ep and Es were degenerate (Ep = Es = E), greatly
simplifying the mathematics (illustrated in Fig. 4.12b). The Fresnel transmission factor for
normal incidence was therefore L = Lxx = Lyy = 2n1/(n1 + n2). Additionally, medium
1 was air, resulting in n1 = 1, and medium 2 was SiO2, which has a relatively small
dispersion that we neglected (i.e. n2(ω) = n2(2ω) = n2). Therefore, Eqns. 4.2.6 were
simplified, resulting in an equation for the radiated field from the polarisation sheet back
into free-space:

E1(ωs) =
ωs

2ε0c

(
2

1 + n2

)
P(ωs) exp(ik1z− iωst) (4.2.7)

where

P(ωs) = ε0|χ(n)
s |En

sheet(ω) = ε0|χ(n)
s |
(

2
1 + n2

)n

En
1 (ω) (4.2.8)

depends on the nth order nonlinear effect being observed from a surface with nonlinear
surface susceptibility χ

(n)
s and the Fresnel transmission coefficient 2/(1 + n2) is used to

relate the incident field in the interface sheet Esheet(ω) to the input field in free space
E1(ω). Since we reduced this to a scalar problem, the susceptibility tensor was replaced
by its complex modulus.
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Incidence

Es

Ep

Reflected
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SiO2 Substrate
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Medium 1
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MoS2 Monolayer
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SiO2 (n2)

E1(ω)

Esheet(ω)= L E1(ω)

generates Psheet(2ω)=ε0χ(2)[Esheet(ω)]2
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x
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z z
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Fig. 4.12: Illustration showing the treatment of nonlinear surfaces: (a) generalised non-
linear harmonic generation from a surface, assuming a thin interface layer which acts as
a radiating polarisation sheet under intense illumination; (b) our experimental setup for
SHG, showing normal incidence pump light generating a nonlinear polarisation wave at
frequency 2ω within the MoS2 monolayer at the surface of the SiO2 substrate. The surface
polarisation radiated second harmonic light back into the air (we neglected reflected
pump light at the interfaces and SHG transmitted into the SiO2). Similar treatment
applied for THG.
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Second Harmonic Generation

For SHG, we found the backwards generated SHG amplitude in air by substituting the

polarisation term P(ωs = 2ω) = ε0|χ(2)
s |
(

2
1+n2

)2
E2

1(ω) into Eqn. 4.2.7:

ESHG(2ω) =
(2ω)

2c

(
2

1 + n2

)3

|χ(2)
s |E2

1(ω) (4.2.9)

Optical intensities are related to field amplitudes by I = 2ε0nc|E|2 [Sut03]. Using this
expression, we rewrote Eqn. 4.2.9 in terms of intensities:

ISHG(2ω) =
1
ε0

[
1
2c

(
2

1 + n2

)2
]3

(2ω)2|χ(2)
s |2 I2

1 (ω) =
32|χ(2)

s |2ω2

c3ε0(1 + n2)6 I2
1 (ω) (4.2.10)

The above intensity values are peak intensities, although in experiments we measured
time-averaged powers. Temporally, the pump light was a train of Gaussian pulses,
enabling us to write Ppk = SPav/( f tfwhm) where the shape factor S = 0.94 for Gaus-
sian pulses, f is the pulse repetition frequency and tfwhm is the FWHM pulse dura-
tion. Additionally, our pump light was assumed to be a Gaussian beam in space with
Ipk = 2Ppk/(πr2), leading to the expression:

Ipk =
2PavS

πr2 f tfwhm
(4.2.11)

Henceforth, I is used to represent peak intensities (since this determines nonlinear effects)
and P to denote the time-averaged powers, which could be measured experimentally. As
second-order nonlinear polarisation is generated in proportion to the square of pump light
intensity, the emitted SHG will have a beam radius and pulse duration which also have a
Gaussian profile but with reduced FWHMs17 by a factor of

√
2.

Finally, we substituted Eqn. 4.2.11 into Eqn. 4.2.10 for both the average input power
P1(ω) and the backwards SHG power PSHG(2ω), including the duration and beam width
correction factor:

PSHG(2ω) =
16
√

2S|χ(2)
s |2ω2

c3ε0 f πr2tfwhm(1 + n2)6 P2
1 (ω) (4.2.12)

This approach was used to determine the magnitude of the surface nonlinear suscepti-
bility |χ(2)

s | at the air-SiO2 interface. However, the interface was a layer of MoS2 for which
the material refractive index nL and thickness δ were known. Therefore, Eqn. 4.2.12 could
be rewritten in terms of an effective bulk nonlinear susceptibility for MoS2 |χ

(2)
eff |:

PSHG(2ω) =
16
√

2S|χ(2)
eff |2ω2δ2

c3ε0 f πr2tfwhm(1 + nL)6 P2
1 (ω) (4.2.13)

17This can be proved by squaring the expression for a Gaussian profile and comparing the width parameter
to the original expression. If a different beam or pulse shape was assumed, the factor would be different.
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Comparison of Eqn. 4.2.12 and Eqn. 4.2.13 suggested that the surface and effective bulk
susceptibilities could be related by:

|χ(2)
eff | =

(
1 + nL

1 + n2

)3 |χ(2)
s |
δ

(4.2.14)

Third Harmonic Generation

We derived an equation relating the THG field to the pump using the same method out-

lined for SHG, but replacing the polarisation term with P(ωs = 3ω) = ε0|χ(3)
s |
(

2
1+n2

)3
E3

1(ω):

ETHG(3ω) =
(3ω)

2c

(
2

1 + n2

)4

|χ(3)|E3
1(ω) (4.2.15)

leading to THG intensity:

ITHG(3ω) =
1
ε2

0

[
1
2c

(
2

1 + n2

)2
]4

(3ω)2|χ(3)
s |2 I3

1 (ω) =
144I3

1 (ω)|χ(3)
s |2ω2

c4ε2
0(1 + n2)8

(4.2.16)

The cubic dependence of the THG intensity upon pump intensity led to a greater pulse
and beam width reduction factor of

√
3, which we included when writing the intensities

and powers (using Eqn. 4.2.11) to find:

PTHG(3ω) =
64
√

3S2|χ(3)
s |2ω2

c4ε2
0( f tfwhmπr2)2(1 + n2)8

P3
1 (ω) (4.2.17)

Finally, following the same procedure used for SHG, we were able to express the
effective bulk third-order nonlinear susceptibility for MoS2 as:

|χ(3)
eff | =

(
1 + nL

1 + n2

)4 |χ(3)
s |
δ

(4.2.18)

In this analysis, we have modelled a three material stack of air, MoS2 and SiO2 by
considering the MoS2 layer as as interface between air and SiO2. It could be argued that
we must consider the MoS2 as a material layer in its own right, forming interfaces with
the air and SiO2. However, we did not see SHG from even numbers of layer of MoS2

(discussed later), which would be possible if the effect was interface-driven due to broken
symmetry. Therefore, we believe this is a fair model of our experiment.

Experimental Results

Pump light with a linear polarisation state was focussed onto a fixed position within
a MoS2 monolayer and the intensities of the generated harmonics were recorded as a
function of input power. For SHG, experimental data was well fitted by Eqn. 4.2.12, con-
firming the squared dependency of SHG power on fundamental pump power (Fig. 4.13).
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This enabled a value of |χ(2)
s | = 2× 10−20 m2 V−1 to be extracted. Using nL∼4.4 [Wan15]

and δ∼0.7 nm [Lee10] for monolayer MoS2 , we computed the effective bulk nonlinear
susceptibility to be |χ(2)

eff | = 3× 10−10 m V−1.
For THG, experimental measurements showed a clear cubed dependence of THG power

on pump power (Fig. 4.14) as expected. From this, we found |χ(3)
s | = 6× 10−28 m3 V−2

and an effective bulk value for MoS2 of |χ(3)
eff | = 2× 10−17 m2 V−2 using Eqn. 4.2.18.
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Fig. 4.13: Power of generated second harmonic from monolayer MoS2 compared to the
fundamental pump power: (a) linear axes; (b) log axes. Experimental data points have
been fitted with Eqn. 4.2.12.
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Fig. 4.14: Power of generated third harmonic from monolayer MoS2 compared to the
fundamental pump power: (a) linear axes; (b) log axes. Experimental data points have
been fitted with Eqn. 4.2.17.

Comparison to Other Nonlinear Optical Materials

To assess the potential impact of monolayer MoS2 for nonlinear optical applications,
we compared our measured values to measurements on well-known materials in the
literature. It is important to note that different measurement techniques can change
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which contributions to the nonlinear response are included: in our case, we measured the
complex modulus of MoS2 off-resonance (1560 nm pump wavelength) at normal incidence
(including only x and y components). Therefore, we compare to similar experiments using
harmonic generation.

Bloembergen, Burns and Matsuoka previously considered various metals and semicon-
ductors in THG experiments [Blo69]. For gold they found |χ(3)| = 5.5× 10−11 esu, which
in SI units is |χ(3)| = 7.7× 10−19 m2 V−2, in agreement with many other more recent stud-
ies [Boy14]. To compare to a semiconductor material, we note that silicon was measured
to possess |χ(3)| = 2.0× 10−10 esu = 2.8× 10−18 m2 V−2 [Blo69]. Comparisons for the
second-order nonlinear response are limited to non-centrosymmetric crystal structures.
Measured values are often presented as second-order nonlinear coefficients d, which we
converted to an estimated |χ(2)| value using |χ(2)| = 2d [Sut03]. Semiconductors cadmium
sulfide and gallium arsenide have been measured to possess |χ(2)| ∼ 2× 10−11 m V−1and
|χ(2)| ∼ 3.4× 10−10 m V−1, respectively [Sho02].

We conclude, therefore, that MoS2 appears to offer up to an order of magnitude greater
second and third-order nonlinearity compared to common optical materials and hence,
could certainly be considered for future nonlinear photonic applications. However, an
accurate assessment of the opportunities for emerging nanomaterials is heavily application-
dependent and must consider the geometry of material in the setup and the laser source,
since these are all factors that affect the response.

4.2.7 Imaging Few-Layer Flakes

We also applied the nonlinear microscopy technique to few-layer MoS2 flakes fabricated
by mechanical exfoliation. Fig. 4.15a shows an optical microscope image of the silicon
substrate containing many few-layer MoS2 flakes. This microscope included a 100× ob-
jective lens and was designed for visible light, whereas the beamsplitter in the linear
microscope section of our linear-nonlinear setup was not anti-reflection coated and hence,
back-reflection of the illumination sources degraded the image contrast (as shown in
Fig. 4.15c). The image shows that many MoS2 flakes had been deposited on the surface,
each with a different contrast ratio. The large yellow and brown coloured regions are
unexfoliated flakes of bulk MoS2, whereas the dark green regions which appear partially
transparent are few-layer forms of the material. Due to the mechanical exfoliation pro-
cedure, the exfoliated flakes here do not appear in triangular shapes as the CVD-grown
flakes did.

We obtained SHG and THG images over a small region, shown in Fig. 4.15b. The scan
range was limited by the time taken to measure the spectrum at each point, although this
was a technical limitation and therefore, the technique should be scalable to much larger
areas by using higher power pump signals (to reduce the integration time required in the
spectrometer detector). The region of interest was known to contain a 2-layer and 7-layer
flake (based on previous Raman and AFM measurements). The THG image showed these
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Fig. 4.15: Linear and nonlinear imaging of few-layer MoS2 flakes: (a) standalone optical
microscope image with 100× objective lens (Data courtesy of MackGraphe); (b) THG
and SHG images of 2-layer and 7-layer regions; (c) optical microscope image from our
integrated setup (20× objective lens).
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two regions as areas of elevated pixel intensities above the negligible THG background
level from the substrate, with a significantly stronger THG intensity for the greater layer
count. By contrast, the 2-layer region in the SHG image was indistinguishable from the
background, due to the electric dipole forbidden nature of χ(2) processes for flakes with
an even number of layers. We also show the linear microscope image for our system when
illuminated by a green LED in Fig. 4.15c, which enabled us to determine the position of
the flakes on the substrate, prior to recording the nonlinear images.

The SHG and THG intensity were recorded across numerous flakes of different thick-
nesses to determine the dependence of harmonic generation on the layer count (Fig. 4.16).
As expected, it was found that no measurable second harmonic was generated with even
numbers of layers and for the odd-layered flakes, the SHG increased slightly with an
increasing number of layers. We note that the optical polarisation state of SHG from
the sample depended on the orientation of the MoS2 flake’s crystallographic axis [Li13].
This orientation and hence, the polarisation state of reflected SHG was not considered
in our measurements. Since the beamsplitter before the power measurements included
a small (∼10%) polarisation dependence, this added ∼10% uncertainty to the measured
power values of PSHG between different flakes. Further work will therefore repeat this
experiment, including measurement of the SHG polarisation state and the application of
correction factors for each flake independently.

A much greater dependence on the flake thickness was measured for the intensity of
THG. The coherence length for backward-generated SHG and THG is [Pav13]:

lcoh =
π

|k(hω) + hk(ω)| =
λ

2h(nhω + nω)
(4.2.19)

where h is 2 for SHG and 3 for THG, k(ω) = 2πn(ω)/λ is the wavenumber and λ is the
pump wavelength. Using MoS2 refractive index values from Ref. [Wan15]: n1560 = 3.639,
n780 = 4.501, n520 = 4.341, we found a coherence length of ∼35 nm for THG, and ∼50 nm
for SHG. Since the coherence length was longer than the thickness of the flake, it was
expected that harmonic intensities would be increased with a greater number of material
layers [Kar15]. The relationship between harmonic intensity and layer count was expected
to be quadratic from Eqn. 4.2.14 and 4.2.12. It is interesting to note that this trend was
observed for our THG results, although the SHG intensity increased at a slower rate. The
variation of the material properties of few-layer MoS2 with layer count could account for
this deviation. An additional factor could be absorption of generated light from one layer
by adjacent layers. Finally, we note that the intensity of the third harmonic was stronger
than the second harmonic, whereas the Taylor expansion of the nonlinear susceptibility
function suggests that nonlinear effects should be weaker with increasing order. Work is
ongoing to understand and explain these effects.
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Fig. 4.16: THG and SHG intensity dependence on the number of layers in mechanically
exfoliated few-layer MoS2 flakes. SHG and THG have each been normalised to the
intensity for a single layer; relatively, the THG intensity was approximately an order of
magnitude stronger.

4.2.8 Discussion and Potential Applications of Nanomaterial-Based
Harmonic Generation

The pump wavelength of 1560 nm (0.79 eV), second harmonic at 780 nm (1.59 ev) and
third harmonic at 520 nm (2.38 eV) do not correspond to any of the excitonic peaks in
monolayer MoS2. Proximity of the virtual levels involved in harmonic generation to these
resonances would enhance the conversion efficiency through greater coupling between
the field and material polarisation, as recently demonstrated with SHG and THG near the
A and B excitons [Cla14, Wan14a].

Another enhancement effect to SHG was recently reported from the edges of MoS2

monolayers [Yin14]: Yin et al. observed up to 50% increased SHG intensity at the borders
of flakes compared to their centres, attributed to a locally enhanced density of states.
However, this resonance was wavelength dependent. We explicitly explored the edges
by line raster scanning towards the corners of flakes, although observed no increase in
intensity. Therefore, edge-enhanced harmonic generation does not appear to be present in
our samples at 1560 nm pump wavelength.

We have demonstrated that harmonic generation can be a useful technique for materi-
als characterisation, suitable for probing crystal symmetries, optical properties and the
layer count of nanomaterial samples, but could few-layer MoS2 benefit other nonlinear
optical applications? The conversion efficiencies we achieved were poor: for over 6 mW
pump power at 1560 nm, less than 2 pW light at 520 nm was generated, which could be
attributed to the few nm interaction length of light with monolayer and few-layer MoS2.
However, compared to the silica substrate and other well-known semiconductors, the
measured nonlinearity was up to an order of magnitude stronger. While the generation
of second and third harmonics in few-layer MoS2 cannot compete with phase-matched
harmonic generation over much longer lengths in established bulk crystals for practical
wavelength conversion, a potential application area is in pulse characterisation. Auto-
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correlation and frequency-resolved optical gating (FROG) measurements measure ultrashort
pulses by using nonlinearity to generate a slowly-varying ‘information signal’ that can
be electronically measured and processed to obtain the pulse duration (and phase for the
case of FROG) [Tre00]. Typically these devices employ bulk crystals and phase matching
is required to generate a signal, thus limiting their wavelength range of operation and
resolution. If second or third harmonics generated from pulses incident on few-layer MoS2

could be used as the information signal, the device could technically operate over a much
wider wavelength range as phase matching is not required for a measurable SHG/THG
response. The device could also be very compact and would required minimal alignment,
making it an interesting prospect for future work. Additionally, we suggest that few-layer
MoS2 could have a high impact as a semiconductor material for nonlinear photonics in the
technologically important telecommunications spectral region, if harnessed for on-chip
signal processing and optical switching.

4.3 Few-Layer MoS2 as a Wideband Saturable Absorber

In this section we report the development of MoS2-based saturable absorbers (SAs) for pas-
sive Q-switching and mode-locking of fibre lasers. The fabrication procedure and optical
characterisation of nanomaterial devices are presented, followed by demonstrations of
pulse generation within ytterbium and erbium gain bands. It may seem counter-intuitive
that saturable absorption is exhibited at infrared wavelengths when the bandgap of the
material is expected to correspond to the visible spectral region. Therefore, we propose
an explanation based on nanomaterial size effects to account for this phenomena. First,
however, the history of saturable absorber technologies is briefly reviewed, highlighting
the motivation for this work.

4.3.1 Brief History of Saturable Absorbers

Advances in saturable absorber technologies are almost synonymous with the evolution
of the laser itself. Even before the first demonstration of lasing in 1960, researchers were
considering how to manipulate the temporal output properties.18 It was no surprise,
therefore, that Q-switched ‘giant pulses’ from a ruby laser were reported only two years
after Ted Maiman’s seminal demonstration [McC62].

While this first pulsed system employed active Q-switching using an electrically-driven
Kerr cell, researchers were quick to consider nonlinear absorption of materials for passive
pulse generation. Early note-worthy experiments included an absorbing dye [Mas63] and
metallic film [Gra63] in a ruby laser cavity, which held the Q-factor low until sufficient
energy built up to damage the film and to escape as a single giant pulse. This was
described as ‘Q-spoiling using an exploding film’ and while the irreversible nature of the
process perhaps restricts us from describing it as a Q-switched laser, they were certainly

18Gordon Gould is credited with first proposing Q-switching in his 1958 notebook [Tay07].
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novel demonstration using absorbing materials to manipulate the temporal output. Stable,
repeatable passive Q-switching was demonstrated shortly afterwards using dyes [Sof64a,
Kaf64, Sor64] and coloured glasses [Bre64]. These materials were initially referred to as
‘reversibly bleachable absorbers’ and ‘saturable filters’, before the community converged
on the term ‘saturable absorber’ [Sza65].

Saturable absorbers were also used to mode-lock lasers, although with limited success
initially due to the more demanding cavity dynamics required for coherent phase-locking
of modes. The earliest reports demonstrated very short mode-locked pulses within a Q-
switched giant pulse envelope, which was achieved using intensity-dependent absorption
in colour-filter glass [Moc65] and dyes [DeM66] in a ruby laser. This regime is referred
to as Q-switched mode locking, in contrast to cw mode locking that produces a continuous
train of equal-intensity ultrashort pulses. Indeed, it was not until 1972 that Ippen, Shank
and Dienes reported a cw mode-locked laser (with a dye gain medium), producing 1.5 ps
pulses, using a saturable absorber dye cell, containing diethyloxadicarbocyanine iodide in
methanol [Ipp72a]. Given the broad scope of the field, we now restrict our focus to the
development of saturable absorbers for fibre lasers (as illustrated in Fig. 4.17).

Real SESAM

Dyes / Coloured
Glasses

Nanomaterials CNTs

2D Materials TMDs

1964 1990 2000 2010

Graphene

Artifical
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NALM
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Saturable 
Absorbers
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Fig. 4.17: Illustrated evolution of salient saturable absorber technologies for fibre lasers.
Orange dots denote the first reported application of each technology in a pulsed laser.

Saturable Absorbers for Fibre Lasers

Shortly after demonstrating pulsation of a ruby laser using a saturable dye, Soffer and
Hoskins applied the dye to Q-switch a neodymium-doped glass rod laser, paving the way
to Q-switched fibre lasers [Sof64b]. Passive mode-locking with fibre gain media, however,
took longer to be experimentally verified. The first reference to this feat in 1983 used a
bleachable dye with neodymium-doped fibre, although the result shows partial mode
locking including strong Q-switching modulations [Dzh83].

Several years passed until a flurry of successful demonstrations emerged in the early
1990s showing cw passively mode-locked fibre lasers. Notably, this included the applica-
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tion of a nonlinear-optical loop mirror (NOLM) to form a figure-of-eight mode-locked Er:fibre
laser [Bul90, Avr90, Dul94]. A NOLM is formed using a non-50% fibre coupler where
the two ports on one side are connected and a length of passive fibre is included in this
loop [Dor88]. The non-reciprocity of the loop results in different phase accumulation for
clockwise and counter-clockwise travelling pulses, which interfere when they recombine
at the output port. The asymmetric phase change also depends on the input peak power,
such that the interference condition and subsequent fraction of light transmitted is power-
dependent. This effect can also be achieved with a 50% coupler ratio and an amplifier in
the loop, known as a nonlinear amplifying loop mirror (NALM) [Fer90, Dul90, Dul91b]. Other
important experiments included the use of a linear external cavity to initiate fibre laser
pulsation [Wig90] (which can explained as additive pulse mode locking [Blo88, Ipp89])
and exploiting nonlinear polarisation rotation in fibres followed by a polariser to cre-
ate intensity-dependent loss, enabling nonlinear polarisation evolution (NPE) mode lock-
ing [Hof91]. These techniques were rapidly confirmed by other groups and shown to
routinely produce sub-picosecond pulses [Dul91a, Hof92, Mat92, Nos92, Tam92].

These NALM-, NOLM- and NPE-based devices all exploit nonlinearity in fibre to induce
an intensity-dependent loss. The response time is therefore almost instantaneous, although
the quality and stability of generated pulses can be poor, due to overdriving of these effects
and susceptibility to changes in the fibre properties from environmental changes (e.g.
thermally-induced birefringence changes). Therefore, while the behaviour they exhibit
warrants their classification as saturable absorbers, they are often described as artificial
saturable absorbers to distinguish them from materials with intrinsic nonlinear absorption,
which are real saturable absorbers.

The early 1990s also saw rapid progress in the development of semiconductor materi-
als as real saturable absorbers for fibre lasers. An InGaAs/GaAs-on-GaAs superlattice
fabricated using molecular beam epitaxy was found to exhibit intensity-dependent loss
and enabled 1.2 ps pulse generation from an Er:fibre laser [Zir91]. Physically, saturable
absorption is related to interband transitions of electrons from the valence band to the con-
duction band of the semiconductor when a photon is absorbed. At low optical intensities,
the absorption is constant. However at high incident intensities, many electron are excited
to the upper states of the material, accumulating in the conduction band. According to
the Pauli Exclusion Principle, two electrons cannot occupy the same quantum state si-
multaneously [Pau25]; therefore, when upper energy levels are occupied, further upward
transitions are blocked (Pauli blocking) and the optical absorption is reduced, i.e. saturated
(illustrated in Fig. 4.18).

In 1992, the semiconductor saturable absorber mirror (SESAM) was developed – a semi-
conductor device containing a Bragg mirror and quantum well absorber [Kel92a, Kel96]
– which rapidly emerged as the dominant and most successful saturable absorber tech-
nology to date. This was due, in part, to the wide variability in parameters that could be
achieved by modifying the structure and materials used, enabling SESAMs to be fabricated
for specific lasers and applications. Most notably, SESAMs enabled passive self-starting cw
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Fig. 4.18: Illustration of the saturable absorption mechanism in semiconductors based
on Pauli blocking. Simplified band structures are shown at three points of material
excitation: (a) initially, incident photons are absorbed, exciting electrons from the valence
band to the conduction band; (b) carriers in each band then rapidly thermalise, leaving
unoccupied levels for further absorption and photoexcited electrons; (c) under intense
illumination (on timescales shorter than material relaxation through carrier recombina-
tion), the upper states become fully occupied, forbidding further electrons being excited
into the conduction band according to the Pauli exclusion principle and thus, saturating
the absorption.

mode locking of bulk lasers for the first time, but the technology also benefited fibre-based
systems by allowing self-starting sub-picosecond mode-locking from inserting a mono-
lithic device into the cavity [Loh93, DeS93]. While researchers were focussing intently on
mode-locked fibre lases, it should also be noted that Q-switched lasers in fibre were under
consideration for applications requiring high-energy ns-µs pulses such as laser range
finding and material processing. By the end of the decade, SESAMs had been applied to
Q-switch an Er:fibre system producing 0.1 mJ pulse energies [Pas99].

Performance of State-of-the-Art Saturable Absorbers

An important parameter for saturable absorbers is their recovery time: the time taken for
the excited state to decay, returning the absorption to its unsaturated value. Depending
on the response time relative to the pulse duration of the laser, a saturable absorber can be
described as fast or slow. In general, a fast saturable absorber is preferred to produce the
shortest possible pulses. However, it should be noted that slow saturable absorbers can
still be used to generate bursts of light shorter than their recovery time (due to the influence
of other pulse shaping mechanisms, such as soliton effects) and generally offer better
self-starting performance [Kär98]. Artificial saturable absorbers operate by exploiting
almost-instantaneous nonlinear responses in materials, whereas the recovery time of
real saturable absorbers is highly dependent on carrier dynamics within the material.
Additionally, other significant parameters include:

• Modulation depth - the maximum possible change in loss due to optical excitation.

• Saturation intensity - the optical intensity required to reduce the absorption by half
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of its saturable value.

• Nonsaturable loss - the residual device loss when fully saturated.

The demands of a saturable absorber are strongly dependent on the target laser and
desired pulse properties. For example, the saturation intensity and modulation depth
determine the threshold for Q-switching and mode-locking. Naively, lowering either of
these two values will reduce the tendency for Q-switching and Q-switched mode locking
if one wanted to achieve a cw mode-locked operation. However, in a fibre laser, where
significant losses can be tolerated due to the high gain, in addition to strong pulse shaping
effects from dispersion and nonlinearity, a lower modulation depth can inhibit self-starting.
Additionally, in a Q-switched laser, the repetition rate and pulse duration are strongly
coupled to the recovery times of the gain and the absorber [Pas08]. It is generally the case,
however, that fast recovery and low nonsaturable losses are preferred to improve laser
efficiency.

From this brief discussion, it can be seen that we cannot specify globally optimum
saturable absorber properties. We also note that in addition to these properties controlling
pulse dynamics, other characteristics are important for a successful saturable absorber
technology such as the damage threshold, environmental stability, range of operating
wavelengths and the ease and cost of fabrication.

NPE mode locking is perhaps the mostly commonly employed technique for developing
mode-locked fibre lasers in research environments, given the instantaneous response time
and large variation in modulation depth and saturation intensity that can be achieved
by modifying polarisation biases in the setup. However, the dependence on a change in
polarisation state demands the use of low birefringence fibres, which are intrinsically sen-
sitive to thermal and mechanical fluctuations [Agr01]. NPE-mode-locked lasers therefore
lack the required stability and reliability to be industrial devices.

While SESAMs continue to enjoy commercial success for both bulk and fibre laser
applications, they are not without their limitations. Firstly, their fabrication by molecular
beam epitaxy is expensive and post-processing ion implantation is required to create
defects states to accelerate the relaxation time to a sub-picosecond scale. Additionally, the
limited operating bandwidth and requirement to operate in a reflective geometry are not
suitable for all laser designs [Kel03]. Recent research has therefore considered alternative
saturable absorber materials such as nanomaterials.

Nanomaterial Saturable Absorbers

It could be argued that early reports of saturable absorption using coloured glass filters
exploited nanomaterials, since the glasses were doped with semiconductor nanocrystals
[i.e. zero-dimensional quantum dots (QDs)] such as cadmium selenide [Bre64] to modify
their colour. However, it was not until 1997 that QDs were explicitly engineered for the
purpose of pulse generation [Gue97]. After this demonstration, the field of nanomaterial
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saturable absorbers gained traction as carbon nanotubes (CNTs) emerged as a promising
material exhibiting nonlinear absorption and ultrafast carrier dynamics [Set03]. As we
discussed in Section 4.1.1, the resonant wavelength for the fundamental E11 transition for
semiconducting nanotubes can be varied by fabricating tubes with different diameters,
enabling pulse generation demonstrations from 810 nm [Khu10] to 2100 nm [Cha12].
Higher order electronic transitions have also been used for Q-switching and mode-locking,
although the saturation intensity for the E22 transition was found to be an order of
magnitude higher than using E11 [Tra11]. Additionally, for broadband operation of a
single saturable absorber device, a distribution of nanotubes with different diameters
can be used, although the non-resonant tubes increase the non-saturable loss [Kiv09].
The response time of nanotube saturable absorbers is on sub-picosecond timescales,
leading to demonstrations of nanotube-mode-locked ultrafast fibre lasers [Has09]. Visible-
wavelength nonlinear optical applications of nanotubes have been restricted, however, by
difficulty in fabrication nanotubes with sufficiently small diameter to yield a bandgap at
visible wavelengths [Has09].

Nanotube saturable absorbers are very flexible and particularly advantageous for fibre
lasers as they can be integrated into various optical components to preserve the all-fibre
alignment-free format. To date, CNTs have been embedded in a polymer composite that
can be sandwiched between two fibre patchcords, used to fill the holes in a photonic crystal
fibre (PCF) and deposited on side-polished fibre and microfibres to exploit the evanescent
field interaction over long distances [Mar13]. Such integrated saturable absorber devices
are not possible using SESAM technology.

Following the early successes of carbon-based nanomaterial saturable absorbers, graphene
was proposed as a suitable material for such applications [Has09, Bao09]. Many of
the fabrication techniques for nanotubes could be applied for developing graphene-
based devices, producing versatile and flexible saturable absorber devices. The major
strength of graphene, however, is intrinsic wideband operation, offering saturable ab-
sorber devices that can theoretically operate resonantly from the visible through to the
mid-infrared [Bon10].

The mechanism of saturable absorption in graphene is understood by considering
the photoexcited electron dynamics. Optical illumination causes interband excitation
of electrons across the zero bandgap, creating a non-equilibrium carrier popular in the
valence and conduction bands. Rapid thermalisation occurs, with carrier relaxation due to
carrier-carrier intraband collisions and phonon scattering (on <100 fs timescales). Electron
interband relaxation also occurs on a slightly longer (∼1 ps) timescale from electron-
hole recombination. However, if the incident light is sufficiently intense, photoexcited
carriers accumulate at the edges of the conduction and valence bands, filling the available
states (according to the Pauli Exclusion Principle) and preventing further absorption. The
presence of two relaxation timescales is favourable for a saturable absorber: the quickest
relaxation enables the shortest possible pulses to be generated, while the slower relaxation
improves the self-starting performance [Bao09, Sun10].

147



Chapter 4 Few-Layer Transition Metal Dichalcogenides

A wide variety of lasers have exploited graphene for passive pulse generation [Sun12,
Mar13], including both fibre and bulk lasers and with operating wavelengths from
800 nm [Bae12] to 2930 nm [Zhu13]. However, while wideband operation is possible,
the performance of graphene saturable absorbers is strongly wavelength dependent as
the saturation intensity scales inversely with wavelength [Mar13], favouring short-pulse
generation at infrared wavelengths; to date, mode-locking at visible wavelengths with a
graphene SA remains a challenge to be overcome.

Therefore, great interest from the saturable absorber community followed the exfoliation
of monolayer MoS2 and the possibility of semiconducting TMDs with bandgaps at visible
wavelengths, tunable by the number of layers. Studies have also computed the MoS2

intraband relaxation time as ∼30 fs [Wan13] and interband transitions have been reported
on picosecond timescales [Wan12b] suggesting ideal fast saturable absorber behaviour.

4.3.2 Few-Layer MoS2-PVA Saturable Absorber Fabrication

We developed few-layer MoS2-polymer composite films, in collaboration with the Univer-
sity of Cambridge, by fabricating few-layer MoS2 flakes using liquid-phase exfoliation (LPE)
and embedding them into a polyvinyl alcohol (PVA) host matrix.19 The resulting devices
were robust, easily-handled and suitable for integration into fibre systems.

Liquid Phase Exfoliation of Few-Layer MoS2 Flakes

Procedure First, MoS2 powder (120 mg) was mixed with 90 mg of sodium deoxycholate
(SDC) bile salt (to act as a surfactant) in 10 mL of deionised water for ultrasonication,
lasting ∼2 hr at a constant temperature of ∼5◦C. The thick unexfoliated bulk MoS2 flakes
were then sedimented via ultracentrifugation (at 4200g), enabling the top 80% of the
dispersion to be collected that is enriched in single- and few-layer flakes.

Characterisation The linear absorption spectrum of the MoS2 dispersion, diluted to
10 vol% and measured using a spectrophotometer, is shown in Fig. 4.19a. The four
observed peaks, at ∼665 nm, ∼605 nm, ∼440 nm and ∼395 nm, are termed A, B, C
and D according to standard nomenclature [Wil69]. A and B are excitonic transitions,
arising from spin-orbit band splitting of the valence band as discussed in Section 4.1.3.
C and D represent transitions between higher density of state regions in the MoS2 band-
structure [Bea72, Bro72].

To determine the number of layers and to evaluate the crystal quality, Raman spec-
troscopy was used. MoS2 has four Raman-active modes (E1g, E1

2g, A1g and E2
2g) and two

IR-active modes (A2u and E1u) [Lee10, MS11]. The E1
2g is an in-plane mode generated by

the opposing vibration of the two S atoms with respect to the Mo atom, while the A1g

mode comes from the out-of plane modes of S atoms vibrating in opposite directions. From

19We thank Dr Tawfique Hasan, Richard Howe and Guohua Hu for nanomaterial fabrication and fruitful
discussions throughout our collaboration.
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monolayer to bulk, the E1
2g mode red shifts, which has been attributed to an enhancement

of the dielectric screening of the long-range Coulombic interaction between the effective
charges with a growing number of layers [MS11]. The A1g mode, however, blue shifts
due to increased van der Waals interactions in thicker samples [Cha13]. Consequently,
the frequency shift between E1

2g and A1g modes can be used to determine the number of
layers.

The measured Raman spectra in Fig. 4.19b shows the relative position of two peaks
close to 400 cm−1, corresponding to the in-plane (E1

2g) and out of plane (A1g) vibration
modes. For the dispersed MoS2 flakes, the frequency difference was 24.62 ± 0.02 cm−1,
compared with 25.29 ± 0.03 cm−1 for bulk MoS2, confirming the presence of few-layer
MoS2 flakes. By comparing our flake frequency difference to detailed layer-dependent
studies of MoS2 Raman spectroscopy [Cha13, MS11, Lee10], we estimated a thickness of
4-6 layers.

To verify this measurement, we used AFM to measure the distribution of flake thick-
nesses in the dispersion. Two traces measured across a typical flake are shown in Fig. 4.20a,
and the combined distribution over hundreds of flakes (Fig. 4.20b) revealed that ∼50%
of the flakes had a thickness of 2-4 nm, corresponding to 3-5 layers (assuming ∼1 nm
measured thickness for a monolayer flake, and∼0.7 nm increase for each subsequent layer
[Lee10]), in agreement with the Raman spectroscopy measurements. In terms of lateral
dimensions, the average flake size was ∼130 nm, with ∼50% of flakes having less than
100 nm dimensions (Fig. 4.20b).
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Fig. 4.19: Characterisation of dispersed MoS2 flakes: (a) optical absorption; (b) Raman
spectra comparing bulk MoS2, dispersed few-layer MoS2 flakes and the MoS2-PVA
composite (dotted lines show the Lorentzian peak fitting which was used to determine
the Raman shift value for each peak). Data courtesy of University of Cambridge.

Integration of Few-Layer MoS2 into a Polymer Composite

Procedure We mixed 4 mL of MoS2 dispersion with 2 mL of 15 wt% aqueous PVA
solution, followed by air drying over a 24 hour period. This produced a ∼25 µm-thick
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Fig. 4.20: Geometric characterisation of few-layer MoS2 flake distributions using atomic
force microscopy: (a) height profile over a whole flake, showing two traces mapped to
2D height profiles; (b) histograms showing distribution of thicknesses and lateral sizes.
Data courtesy of University of Cambridge.

free-standing polymer composite film.

Characterisation An optical microscope and scanning electron microscope (SEM) were
used to confirm a uniform distribution of flakes throughout the composite film and to
verify the absence of large (>1 µm) aggregates, which could otherwise lead to scattering
losses. Using Raman spectroscopy, we confirmed that the MoS2 structure was unaffected
by its inclusion in the composite, shown by a lack of significant shift in the Raman peak
positions between the LPE MoS2 and LPE MoS2-PVA (Fig. 4.19b) The linear absorption
spectrum of the composite showed the same characteristic features as the MoS2 dispersion
and a notable increase in absorption compared to a pure PVA film of the same thickness
(Fig. 4.21). This suggests that MoS2 flakes in our sample are responsible for the increased
value of absorbance, confirming absorption of light (assuming negligible scattering con-
tribution) in the near-infrared region corresponding to photon energies below the MoS2

bandgap. We discuss this observation in detail in Section 4.3.5.

The nonlinear optical properties of our MoS2-PVA composite were characterised using
an open-aperture Z-scan experiment: a widely-used technique which was first proposed
by Sheik-Bahae, Said and Van Stryland [SB90]. The sample was moved through the focal
plane of a beam of ultrashort pulses, varying the area of illumination and consequently,
the peak intensity. By recording the transmitted power, in addition to the power before the
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Fig. 4.21: Optical absorption spectrum of MoS2-PVA composite film and pure PVA film,
both 25 µm thick.

sample as a reference for normalisation, the material absorption was recorded with respect
to the incident intensity (illustrated in Fig. 4.22a). We performed Z-scan measurements at
wavelengths corresponding to ytterbium- and erbium-doped media, to assess the potential
of the material as a saturable absorber for typical fibre laser spectral regions.

For the ytterbium spectral region pump source we employed an amplified, SESAM-
mode-locked Yb:fibre laser, emitting 12 ps pulses at a repetition rate of 26.4 MHz with
1065 nm central wavelength (IPG YLP-10-ps). To improve the peak power, we used a
double-pass diffraction grating pair compressor (with 1200 lines per mm) to reduce the
pulse duration to ∼500 fs (a detailed explanation of grating-based pulse compression
is presented in Section 3.3). A slight pulse pedestal was observed after compression,
although it was computed that >80% of the measured power was contained within the
pulses, and this was taken into consideration in calculations. For a pump source to probe
the nonlinear response at 1565 nm, we developed an Er:fibre mode-locked laser, directly
generating 750 fs pulses with 7.5 MHz repetition rate.

At both pump wavelengths, we observed a decreased material absorption with increas-
ing peak intensity (Fig. 4.22b & c). This confirms that the fabricated MoS2-PVA composite
exhibited saturable absorption. To extract values for performance parameters, we fitted
the intensity-dependent absorption, α(I), using a two-level fast saturable absorber model
[Gar00]:

α(I) =
αs

1 + I/Isat
+ αns (4.3.1)

where I is pump light intensity, Isat is the saturation intensity, αs and αns are the saturable
loss (i.e. modulation depth) and non-saturable loss, respectively.

Experimental data at 1565 nm excitation was well fitted by the model. We found:
αs ∼ 10.7%, αns ∼ 14.7%, and Isat ∼ 2 MW cm−2. However, the two-level model appeared
less suitable for describing the absorption at 1065 nm, due to an increase in absorption
towards the highest intensity values (the maximum intensity was limited by the pump
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source). Similar absorption profiles have also been observed in nonlinear characterisation
of SESAM devices, attributed to multiphoton absorption [Tho99]. We believe that two-
photon absorption (TPA) was present at 1065 nm for our sample, since two pump photons
had sufficient combined energy to excite a single electron across the MoS2 bandgap.
However, under 1565 nm excitation, three photons were needed to cause this transition;
the occurrence of this effect was thus less probable, and not observed experimentally. TPA
can be included in the fast saturable absorber model by adding a +βeff I term, where βeff

is the effective TPA coefficient.

With this modification, the quality of the fit to experimental data was greatly improved
(Fig. 4.22a). Values for the modulation depth and saturation intensity were 6.3% and
7 MW cm−2 respectively, and the fit yielded a TPA coefficient value of 0.087 cm2 MW−1.
We also performed a Z-scan measurement on pure PVA, but observed no change in
absorption, confirming that the response in the composite arose from the MoS2flakes. The
saturable absorption response of the MoS2-PVA composite suggested that it could be used
to modulate the loss and the Q-factor of a laser cavity to generate a regular train of pulses.

Ultrafast
Laser

Translation
Stage Signal

Power Meter

Reference 
Power Meter

5% Tap
Mirror

MoS2

Sample

(a)

(b) (c)

10 2 10 1 100 101 102 103

Intensity (MW cm 2)

14

16

18

20

22

24

26

A
bs

or
pt

io
n 

(%
)

At 1565 nm:

10.7%

Isat

2 MW cm 2 SA Model

10 2 10 1 100 101 102

Intensity (MW cm 2)

17

18

19

20

21

22

23

24

25

A
bs

or
pt

io
n 

(%
)

At 1065 nm:

6.3%

Isat

7 MW cm 2

SA Model

SA Model
with TPA

Fig. 4.22: Open-aperture Z-scan experiment for nonlinear absorption characterisation:
(a) schematic; (b) measured profile at 1065 nm; (c) measured profile at 1565 nm. The
solid green and red lines are fits to the two-level fast saturable absorber model with and
without a two-photon absorption contribution, respectively.
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4.3.3 Q-switched Yb-doped Fibre Laser

A Yb:fibre laser was developed with a ring cavity design, using a 1.5 m double-clad
ytterbium-doped amplifier fibre (Fig. 4.23). The MoS2 saturable absorber was inserted
into the cavity by sandwiching a ∼1 mm×1 mm piece of the composite between angled
patch cords (Fig. 4.24). A polarisation-independent isolator, 10% output coupler and a
polarisation controller were also included. To enable tuning of the lasing wavelength,
we added a tunable bandpass filter, constructed from a fibre-coupled air gap with an
angle-tunable 1 nm bandwidth bandpass interference filter. The total cavity length was
∼13 m.

Ytterbium-Doped
Fibre Amplifier

10% Output
CouplerPolarisation

Controller
Tunable
Filter

Isolator

Laser 
OutputMoS2

Saturable Absorber

Fig. 4.23: Schematic of Q-switched Yb:fibre laser including a MoS2-PVA saturable
absorber.

MoS2-PVA

Saturable Absorber Fibre Patch Cord

Fibre Connector

Fig. 4.24: Illustration showing the integration of MoS2-PVA composite film into fibre-
based systems by sandwiching a ∼1 mm × 1 mm piece of composite film between two
fibre patch cords.

As the amplifier pump power was increased, the cavity initially lased in a continuous-
wave regime. By further increasing the pump power, self-starting Q-switching was
observed, producing a stable train of pulses. Typical output characteristics of the laser at
1055 nm wavelength and 9.36 mW average output power are shown in Fig. 4.25. Pulses
were generated with 13.4 µs pulse spacing, corresponding to 74 kHz repetition rate, and a
FWHM pulse duration of 2.88 µs. The pulse energy was 126 nJ and a radio frequency (RF)
spectrum of the output showed a high peak-to-background contrast of ∼45 dB, indicating
good pulse train stability.

The average output power in the Q-switched regime was variable from 7.0 mW to
10.5 mW, limited by the available pump power. Pulse properties in continuous-wave
pumped Q-switched lasers depend on nonlinear dynamics in the gain medium and
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Fig. 4.25: Q-switched Yb:fibre laser characteristics: (a) pulse train; (b) single pulse pro-
file; (c) RF spectrum of fundamental frequency, f0=74 kHz; (d) variation of repetition
frequency and pulse duration with output power; (e) output spectra for Q-switched
operation at various wavelengths. The wavelength could be continuously tuned between
1030 and 1070 nm using the tunable filter.
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saturable absorber, which lead to a dependence of repetition rate and pulse duration upon
pump power [Deg95]. A pulse is emitted once a certain stored energy in the cavity is
reached. Thus, a greater pump power enables higher repetition rates and also results
in shorter pulses. This was observed experimentally as the pulse duration reduced
from 4.40 µs to 2.68 µs and the repetition rate increased from 65.3 kHz to 89.0 kHz with
increasing output power (Fig. 4.25d). The pulse duration could be shortened further by
reducing the length of the laser cavity [Deg95].

By varying the passband of the tunable filter, stable Q-switched operation was achieved
with continuous tunability from 1030 nm to 1070 nm (Fig. 4.25e). As the amplifier gain
changed with wavelength, the output power of the laser varied. It was therefore necessary
to adjust the pump power to maintain Q-switching (this accounts for the variations in
spectral intensities in Fig. 4.25e). The tuning range was limited by the gain bandwidth of
the ytterbium amplifier rather than the MoS2 saturable absorber. Therefore, with a gain
medium supporting broader band operation, we expect that tunable Q-switched laser
pulses could be generated over an even wider spectral range.

4.3.4 Mode-locked Er-doped Fibre Laser

An Er:fibre laser was constructed with a similar design to the Yb:fibre cavity but including
components to operate at telecommunication wavelengths and passive Corning SMF-28e
fibre (β2 ∼ −21.6 ps2 km−1, γ ∼ 1.3 W km−1 at 1550 nm). The amplifier was formed of
a 1 m length of double-clad erbium-ytterbium co-doped fibre, pumped by a laser diode
at 962 nm. Co-doping enables significantly greater pump absorption as ytterbium has a
higher absorption cross section than erbium and after photoexcitation of ytterbium ions,
energy is efficiently transferred to the erbium ions to provide gain around 1550 nm [Sni65].
A tunable filter was included in the cavity to vary the laser wavelength, with a bandwidth
of 12.8 nm. The total cavity length was ∼15.4 m.

MoS2

Saturable Absorber
15% Output

Coupler

Polarisation
Controller

Tunable
Filter

Isolator

Laser 
Output

Erbium-Doped
Fibre Amplifier

Fig. 4.26: Schematic of mode-locked Er:fibre laser including a MoS2-PVA saturable
absorber.

Self-starting mode-locking was observed at the fundamental repetition frequency of the
cavity of 12.99 MHz, with 65 pJ pulse energy. The output wavelength was continuously
tunable from 1535 to 1565 nm (Fig. 4.27a) by varying the angle of the interference filter
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in the rotating tunable filter setup. This tuning range was limited by the maximum
wavelength of the tunable filter on the long wavelength side and by the gain bandwidth
of the Er-doped fibre amplifier on the short wavelength side, which caused the FWHM
spectral bandwidth to reduce from ∼3.0 nm to 0.4 nm as the wavelength was decreased.
Ultrashort pulses were generated at every wavelength with a sech2 shape, shown by
autocorrelation traces at representative wavelengths in Fig. 4.27b. The increase in duration
towards shorter wavelengths was due to the reduced spectral width, as expected from the
Fourier transform.

Spectral sidebands were observed at certain wavelengths, arising from resonances
between solitons and dispersive waves emitted by solitons as they adjust themselves to
maintain their shape in the presence of perturbations during a round-trip (as discussed
in Section 2.5.2). Sidebands are only generated when the cavity length is longer than the
soliton period z0 [Kel92b, Den94]. Pulses at 1552 nm and 1558 nm in Fig. 4.27 with ∼1 ps
duration corresponded to a soliton period of ∼21 m, which is reasonably similar to the
15.4 m length. This explains why weak sidebands are observed at these wavelengths,
whereas the longer pulses at other wavelengths have soliton lengths much longer than
the cavity (e.g. at 3.9 ps, z0 =350 m), where the pulse behaves as an unchanging average
soliton in the cavity [Kel91].

The time-bandwidth product (TBP) for output pulses ranged from 0.37 to 0.47, slightly
larger than the transform-limited value of 0.315 for sech2 pulses, indicating a small chirp.
Therefore, by careful dispersion management of the cavity, it would be possible to reduce
the pulse duration further. Laser stability was inferred from the radio frequency (RF)
spectra at 1552 nm (Fig. 4.28). The fundamental frequency showed a high signal to
background extinction ratio of 55 dB and higher cavity harmonics, recorded on a span of
90 MHz, showed no Q-switching instabilities, indicating good mode-locking performance
of the cavity. Similarly stable performance was observed throughout the tuning range of
the laser.

4.3.5 Edge-State Saturable Absorption

In a perfect crystalline semiconductor, the bandgap – corresponding to the energy range
with zero density of states – prohibits absorption of single photons that have an insufficient
energy to excite electrons from the valence band to the conduction band [Yu10]. However,
our Z-scan measurements and experimental demonstration of Q-switching and mode-
locking fibre lasers using an MoS2-PVA composite unequivocally confirmed that the
material exhibited saturable absorption at wavelengths in the range 1030-1070 nm (1.20-
1.16 eV) and 1535-1565 nm (0.81 -0.79 eV) despite corresponding to photon energies
lower than the expected material bandgap. Additionally, numerous other research groups
working concurrently with ourselves have observed sub-bandgap saturable absorption
from few-layer MoS2 [Wan13, Wan14b, Zha14a]. Despite this growing body of work, a
full explanation of the governing physical mechanism has yet to be formulated. Here, we
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Fig. 4.27: Mode-locked Er:fibre laser characteristics: (a) optical spectra at various wave-
lengths within the continuous tuning range from 1535 to 1565 nm; (b) corresponding
autocorrelation traces (shown with a sech2 fit and the deconvolved pulse duration)
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Fig. 4.28: RF spectrum of mode-locked Er:fibre laser output: (a) numerous cavity har-
monics on a 90 MHz span; (b) 20 kHz span about the fundamental, f0 = 13 MHz.
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Chapter 4 Few-Layer Transition Metal Dichalcogenides

propose a possible explanation based on edge-state absorption.

The basal planes of MoS2 crystals are known to be chemically inert due to tight bonding
between the exposed S atoms with the Mo atoms underneath, and are thus expected to
be optically inactive. However, small flakes of few-layer MoS2 are not infinite, perfect
crystals. At the edges of the atomic planes, crystallographic symmetry is broken and
Mo and S sites are left with unsaturated bonds, which can modify the local electronic
structure [Rox86b, Yu10] . We propose that the large edge to surface area ratio of few-
layer nanoflakes of MoS2 (typically <100 nm across and <4 nm in thickness, as shown in
Fig. 4.20b) results in a large number of edge sites, significantly modifying the electronic
structure and leading to the presence of energy states within the pristine crystal band
structure.

This is supported by earlier spectroscopic studies on MoS2. In the 1980s, Roxlo et al.
performed photothermal deflection spectroscopy (PDS) measurements to characterise the
absorption (PDS is unaffected by scattering) of different sizes of few-layer MoS2 flakes at
photon energies above and below the bandgap (Fig. 4.29) [Rox86b, Rox86a, Rox87]. They
found very similar absorption spectra for photoexcitation at wavelengths corresponding
to energies higher than the material bandgap, but at sub-bandgap photon energies, small
flakes of few-layer MoS2 (∼1 µm across) showed up to two orders of magnitude greater
absorption than a single crystal. Texturing of single crystals was also shown to increase
sub-bandgap absorption by a factor of ten [Rox86a, Rox87].

Smaller or textured flakes possess a larger edge to surface area ratio, suggesting a
greater contribution to the absorption spectra from edge states that form quasi-energy
levels within the forbidden energy gap of the pristine crystal band structure [Rox86b,
Rox86a, Rox87, Yu10]. Edge states, therefore, appear to promote absorption at photon
energies lower than the bandgap. More recently, this has been verified by theoretical band
structure studies showing that edges result in a finite local density of states within the
bandgap of MoS2 crystals [Zho13].
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Fig. 4.29: Optical absorption of pristine and lithographically textured single MoS2 crys-
tals of 0.7 µm thickness, and microcrystal distributions containing large (36 µm diameter)
and small (1.7 µm diameter) flakes. Adapted from [Rox87].
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We suggest that these edge states could then be saturated under high intensity illumina-
tion by the principle of Pauli blocking. This mechanism for SA is supported by reports of
mode-locking using defect in-bandgap states in other nonlinear crystals [Dem94, Zha92].

A distribution of edge states within the bandgap could explain the wideband saturable
absorption experimentally observed here, although the density of states is not expected to
be constant throughout the bandgap as shown in Ref. [Zho13], and will depend on the
geometry and edge termination (whether Mo or S sites).

Wang et al. have also proposed a complementary explanation for sub-bandgap ab-
sorption based on atomic point defects, following theoretical studies of the bandgap
behaviour [Wan14b]. The introduction of both Mo and S defects was found to reduce the
bandgap, although an excess of Mo defects led to metallic behaviour with no SA effects,
whereas S defects maintained the semiconductor behaviour and reduced the bandgap to
0.08 eV (supporting the generation of photoexcited carriers up to wavelengths as long as
15.4 µm).

Generalising the above theory, we expect edge-state sub-bandgap saturable absorp-
tion to be present in other few-layer semiconducting TMDs with a high edge to surface
area ratio. Reports are also emerging of pulse generation using CVD-grown few-layer
MoS2 materials [Xia14], where the flake sizes can be hundreds of times larger, reducing
the impact of edges. Crystallographic defects, dislocations and grain boundaries may
contribute to sub-bandgap absorption here [Zho13] and further work is clearly required
to thoroughly understand the impact of size effects on the nonlinear optical properties
of few-layer TMDs. With such knowledge, it could be possible to tailor the nanomate-
rial properties for particular applications, which is an attractive prospect for a range of
photonic devices.

4.4 Opportunities for Other Transition Metal Dichalcogenides

We have demonstrated that few-layer MoS2 is a flexible saturable absorber material for
Q-switching and mode-locking fibre lasers at a range of infrared wavelengths. Extending
this work, we expect the fabrication techniques and the discussed saturable absorption
mechanism to apply for other semiconducting TMDs, due to similarities in the layer-
dependent band structure. Researchers have already demonstrated a bulk-to-monolayer
transition from indirect to direct bandgap behaviour in tungsten disulfide (WS2), molyb-
denum diselenide (MoSe2) and tungsten diselenide (WSe2), each with different bandgap
ranges that are accessible by varying the number of layers [Ton12, Zha13b]. In this section,
we consider an additional TMD, molybdenum diselenide (MoSe2) and demonstrate its
application as a wideband saturable absorber. We also consider the operation of TMD SAs
at their resonant bandgap wavelengths, proposing a route to short-pulse fibre lasers at
visible spectral regions.
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4.4.1 Q-switched Yb-, Er-, and Tm-doped Fibre Lasers with MoSe2

Molybdenum diselenide (MoSe2) is a similar material to MoS2, but with selenium atoms
in place of the sulfur atoms. The heavier chalcogenide atoms result in a narrower gap
bandgap, reported as 1.1 eV (1128 nm) in bulk form and reducing to a direct 1.55 eV
(800 nm) gap for monolayer MoSe2 [Ton12, Zha14b]. We applied the liquid-phase exfolia-
tion processing techniques developed in Section 4.3.2 and performed similar experiments
to test our hypothesis that other few-layer semiconducting TMDs could exhibit edge-state-
based saturable absorption.

Few-Layer MoSe2-PVA Saturable Absorber Characterisation

LPE of bulk MoSe2 crystals yielded a dispersion of few-layer MoSe2 flakes. An ensemble of
AFM measurements revealed an average thickness of 3.8 nm, with <5 nm thickness for 80%
of flakes, verifying that the majority of flakes consisted of only 6-7 layers, assuming 1 nm
measured thickness for the first layer and 0.7 nm increase for additional layers [Ton12].
The flakes were integrated into a PVA matrix to form a free-standing ∼30 µm thick
MoSe2-polymer film.

The linear optical absorption profile of the composite (Fig. 4.30a) showed the charac-
teristic excitonic peaks for MoSe2 at ∼800 nm (A) and ∼710 nm (B). These two peaks
result from spin-orbit split transitions in the valence band, similar to those observed with
MoS2 [Ton12]. The composite film absorption was 9.8%, 11.3% and 12.1% at 1060 nm,
1566 nm and 1924 nm, respectively (the three operating wavelengths of the lasers we
demonstrated), highlighting a marked increase over the absorption values for the pure
PVA film of 2.3%, 3.2% and 4.5%. An open-aperture Z-scan experiment showed that
the MoSe2-PVA composite exhibited saturable absorption, well-fitted by the standard
two-level saturable absorber model and showing no evidence of two-photon absorp-
tion (Fig. 4.30b). Performance characteristics were computed as: saturation intensity
Isat∼3.4 MW cm−2; modulation depth αs∼4.7% and nonsaturable loss αns∼6.6%, which
were similar in magnitude to our MoS2 device.

Design and Characterisation of Fibre Lasers

The demonstrated sub-bandgap saturable absorption of our few-layer MoSe2-PVA com-
posite suggested that the device could be used for short pulse generation at 1565 nm. The
MoSe2-PVA SA was integrated into an Er-doped fibre laser, in addition to Yb- and Tm-
doped fibre lasers to explore the potential of exploiting sub-bandgap saturable absorption
for short-pulse generation at different near-infrared wavelengths using a single MoSe2 SA.
For each laser cavity, a ring design was adopted, including a polarisation-independent
isolator, output coupler and polarisation controller, in addition to the fibre amplifier
(Fig. 4.31). The Yb and Er amplifiers consisted of double-clad Yb and Er fibre, which were
1.5 m and 11.6 m long, respectively. The Tm fibre amplifier was formed of a 2.9 m length of
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Fig. 4.30: Optical characterisation of few-layer MoSe2-PVA composite: (a) linear absorp-
tion spectrum; (b) nonlinear absorption profile, recorded in an open-aperture Z-scan
experiment.

single-clad Tm-doped fibre, pumped by a 1550 nm continuous wave fibre laser. The total
lengths of the Yb, Er, and Tm fibre-based cavities were ∼15.9 m, ∼27.4 m and ∼13.4 m,
respectively. A 1 mm × 1 mm piece of the MoSe2 SA film was integrated into the cavity
by placing it between two fibre patch cords.

Self-starting Q-switching was observed from the Yb:fibre laser, generating a steady train
of pulses, centred at 1060 nm (Fig. 4.32). By changing the pump power, the average output
power could be varied from 6.26 mW (corresponding to the threshold for Q-switched
emission; below this, the laser output was a continuous wave) to 8.72 mW. With increasing
power, the pulse repetition frequency was increased from 60.0 kHz to 74.9 kHz and the
duration decreased from 4.6 µs to 2.8 µs (Fig. 4.33a).

The Er:fibre laser with the few-layer MoSe2-PVA composite also exhibited self-starting
Q-switching at an average output power of 18.9 mW, operating at 1566 nm (Fig. 4.31b). By
varying the pump power, the repetition rate could be changed from 26.5 kHz to 35.4 kHz
and the duration from 7.9 µs to 4.8 µs as the average output power increased from 18.9 mW
to 29.2 mW (Fig. 4.33b).

Continuous-wave lasing at 1924 nm was initially observed as the pump power of the
Tm:fibre laser was increased, until the Q-switching threshold was reached, corresponding
to 0.13 mW average output power (Fig. 4.32c). Beyond threshold, a steady train of Q-
switched pulses was generated. The average output power increased with pump power
and the Q-switched pulse duration reduced from 16.0 µs to 5.5 µs while the repetition rate
increased from 14.0 kHz to 21.8 kHz (Fig. 4.33c).

We have demonstrated that the few-layer MoSe2-PVA composite exhibited wideband
saturable absorption, enabling Q-switching at three wavelengths in the near-infrared
region from a single device. Such wavelengths corresponded to sub-bandgap absorption,
which we attributed to edge states in the material following the same argument developed
in Section 4.3.5 to explain the operation of MoS2 devices. It was interesting to note that
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Fig. 4.31: Schematics of Q-switched (a) Yb-, (b) Er-, (c), Tm-doped fibre lasers including a
MoSe2-PVA saturable absorber.
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Fig. 4.33: Variation of pulse duration and repetition rate with average output power for
(a) Yb-, (b) Er-, and (c) Tm-doped fibre lasers, Q-switched with a few-layer MoSe2 SA.
The dotted lines are intended to guide the eye – they are not a result of curve fitting.

mode-locking was not achieved in any of the cavities, whereas this was possible using
MoS2 at 1550 nm. Investigations are ongoing to optimise 2D material-based saturable
absorbers for mode-locked fibre laser systems.

4.4.2 Visible Short-Pulse Fibre Lasers

A greater nonlinear response could be expected for resonant operation – i.e. using the
device at a wavelength corresponding to the bandgap energy or excitonic peaks. A
variety of different transition metal dichalcogenides are emerging with different bandgaps
throughout the visible spectral region and the exact resonant wavelength can be tuned
by varying the flake thickness (to engineer the flake size, one can relatively easily change
the fabrication conditions, for instance, by varying the ultracentrifugation rate in an LPE
process [Zho15]). We believe that few-layer transition metal dichalcogenides could offer
particular advantages as saturable absorbers at visible wavelengths – a region where other
nanomaterial-based saturable absorber technologies have struggled.

The success of fibre lasers at infrared wavelengths has not translated to the visible
spectrum, despite great demand for flexible, reliable laser sources in this region (especially
for biomedical applications). While great progress has been made by frequency doubling
the output of fibre lasers and exploiting other nonlinear processes to generate visible light,
active fibres with visible emission hold untapped potential. A suitable rare-earth dopant,
trivalent Praseodymium Pr3+, is available and offers many transitions throughout the
visible region (Fig. 4.34) [Sma91]. Unfortunately however, the phonon energy of silica is
relatively high (∼1100 cm−1 [Dig01]), which causes depopulation of excited energy levels
through nonradiative phonon interactions and results in weak emission cross sections for
many transitions, inhibiting lasing.

To circumvent this problem, fluoride glass can be used, such as ZBLAN (a multi-
composite glass including numerous heavy metal fluorides: ZrF4-BaF2-LaF3-AlF3-NaF)
which has a lower phonon energy of ∼500 cm−1 [Dig01]. While ZBLAN fibres are hygro-
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Fig. 4.34: Pr3+in ZBLAN glass: (a) energy level diagram showing a selection of laser
transitions; (b) emission spectrum. Adapted from Ref. [Sma91].

scopic and more challenging to handle, advances in fluoride fibre manufacture are enabling
more robust and lower loss fibres. Recent developments have also shown low-loss splicing
to silica fibre [Oka11], low-cost gallium nitride (GaN) blue diode pumping [Fuj13] and
actively Q-switched operation [Koj13]. Therefore, we believe that Pr:ZBLAN fibres com-
bined with transition metal dichalcogenide saturable absorbers could be an ideal route
towards next-generation short-pulse laser sources throughout the visible region.

4.5 Summary

In this chapter we have studied the nonlinear optical properties of emergent 2D nanomate-
rials: few-layer transition metal dichalcogenides, with a particular focus on molybdenum
disulfide. We developed an in-situ characterisation technique based on second- and
third-harmonic generation microscopy, which was capable of high-resolution imaging
and non-destructive testing of samples. The setup enabled us to determine the number of
layers in a flake and to probe the crystal structure through symmetries in the nonlinear
susceptibility tensor by resolving the polarisation of incident and nonlinearly generated
light. We also obtained an estimate of the magnitude of the second- and third-order
susceptibility by modelling the 2D material as a nonlinear polarisation sheet and apply-
ing established theory from surface nonlinear optics. We confirmed that the nonlinear
response was much stronger from monolayer and few-layer MoS2 than the silica substrate,
although comparison of 2D materials and conventional bulk material requires further
theoretical work and derivations of figure of merits.

Future work will consider the nonlinear response of additional 2D materials and will
explore other χ(3) effects such as four-wave mixing. The few nanometre thickness of these
materials results in low interaction lengths, suggesting that high conversion efficiencies are
not possible. While the materials may not be suitable for practical wavelength conversion
devices, we could exploit their nonlinearity to develop compact and broadband pulse
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4.5 Summary

characterisation systems.
With a focus on applications, the second part of this chapter considered the fabrication of

few-layer TMD-PVA composite films for integration into fibre lasers as saturable absorbers.
High modulation depths of a few percent and low saturation intensities were measured
(alongside unfavourably high nonsaturable losses), enabling short pulse generation at
a range of near infrared wavelengths. Q-switching was obtained in all systems we
developed, although only the Er:fibre laser with MoS2 was able to exhibit mode-locking.
Work continues to understand how to achieve mode-locking at other wavelengths by
optimising these materials.

The observation of wideband saturable absorption is a compelling merit for further work
into few-layer MoS2, potentially enabling single saturable absorber devices to operate over
a wide wavelength range. An explanation for this mechanism was proposed based on
saturable edge-state absorption. The visible bandgap, however, may be the real strength
of few-layer TMDs, offering resonant operation which is tunable with the number of
layers. Short pulse generation in the visible is a challenging area for fibre lasers, presenting
problems for current nanomaterial saturable absorbers using nanotubes and graphene,
but with great demand for pulsed sources in biomedical applications. Future work is
therefore planned using Pr:ZBLAN fibre to realise this ambition.

165





5
STIMULATED BRILLOUIN SCATTERING

IN PHOTONIC CRYSTAL FIBRE

Photonic crystal fibres (PCFs) can be fabricated with a small core to provide tight modal
confinement and consequently, the ability to guide high optical intensities. This enables
effective nonlinear parameters that are orders of magnitude greater than those offered by
conventional step-index fibre, suggesting that such PCFs could permit the generation of
significant nonlinear effects at reduced pump powers.

In this chapter, we explore stimulated Brillouin scattering (SBS) in small-core PCFs and
develop a self-mode-locked Brillouin PCF laser.1 Section 5.1 introduces the basic concepts
of Brillouin scattering, mediated by optoacoustic interactions, and discusses recent reports
in the literature of unexpected observations concerning Brillouin interactions in PCF. We
experimentally characterise SBS at 532 nm and 1550 nm in two different PCF structures in
Section 5.2 and discuss the impact of the pump wavelength relative to fibre length-scales
on the underlying acoustic dynamics. Section 5.3 reports the development of a Brillouin
PCF laser and studies the temporal dynamics of the output, showing pulsed behaviour
under certain conditions. Finally, we end the chapter with an outlook for harnessing
nonlinear optoacoustic phenomena in PCFs for practical applications.

The results in this chapter have been reported in the following journal articles and
conference proceedings: [Woo14d, Woo14c, Woo15h].

1Our initial aim for this work was to develop a Raman laser at visible wavelengths using PCF, although
strong Brillouin gain was found to dominate all other nonlinear effects. While we were not able to achieve
stimulated Raman scattering, the differences we observed between our SBS measurements and recently
published literature results motivated further study of the effect, as presented in this chapter.
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Chapter 5 Stimulated Brillouin Scattering in Photonic Crystal Fibre

5.1 Introduction: Brillouin Scattering in Fibre

5.1.1 Fundamental Principles

The inelastic scattering of light from acoustic vibrations was theoretically predicted by
Léon Brillouin in 1922 [Bri22], and independently by Leonid Mandelstam in 1926 [Man26].2

Experimental observation of this Brillouin scattering effect shortly followed [Gro30].
Specifically, it was shown that the interaction of pump light at frequency ωp with acoustic
waves in the medium could shift the optical frequency to create a Stokes wave at fre-
quency ωs and scattering angle θ. According to energy and momentum conservation,
the Brillouin frequency shift is ωb = ωp − ωs and the pump and Stokes wavevectors
(kp and ks, respectively) are related to the acoustic wavevector ka by ka = kp − ks

(Fig. 5.1a) [Agr13, Dam03].
These conditions can be combined using the dispersion relation to express the Brillouin

shift in terms of the acoustic velocity in the medium va:

ωb = va|ka| = 2va|kp| sin(θ/2) (5.1.1)

where |kp| = |ks| has been assumed since the Brillouin shift is much smaller than the
optical frequency.

kp

ka
ks

θ
Pump, ωp

Backscattered
Stokes, ωp-ωb

Propagating index grating
from density modulations

(i.e. acoustic waves)

(a) (b)

Fig. 5.1: Illustration of Brillouin scattering: (a) wavevector orientations in the general case;
(b) orientation of wavevectors in fibre showing the stimulated Brillouin backscattering of
pump light to create a Stokes wave which is downshifted by the Brillouin frequency ωb.

Early measurements of Brillouin scattering considered relatively low-intensity pump
light, where the scattering is spontaneous and arises from thermally excited acoustic waves
(i.e. density variations) in the medium. Decades later, the invention of the laser enabled
significantly higher pump intensities, leading to the observation of stimulated Brillouin
scattering [Chi64]. In this case, beating between the pump and Stokes light modulates the
density of the medium, driving acoustic waves through electrostriction3, which results in
stronger nonlinear scattering.

2It is claimed that Mandelstam first performed this study in 1918, many years before the work (and that of
Brillouin) was published [Fei02]. Therefore, the effect is occasionally referred to as Brillouin-Mandelstam
scattering.

3Electrostriction is a property of all dielectrics, where applied electric fields induce strain in the mate-
rial [New11]. If the medium absorbs strongly at the pump wavelength, a temperature wave can also be
induced to drive an acoustic wave [Dam03], although this is neglected herein as we always work within
the transparency window of silica.
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5.1 Introduction: Brillouin Scattering in Fibre

Optical fibres present an ideal platform for generating SBS with long interaction lengths,
as first observed by Ippen and Stolen in 1972 [Ipp72b]. In single-mode fibres, the only
possible scattering directions are forwards (θ = 0) and backwards (θ = 180◦), suggesting
that the Brillouin effect always occurs as backscattering according to Eqn. 5.1.1 (illustrated
in Fig. 5.1b). The Brillouin frequency shift can then be written in terms of the pump
wavelength using |kp| = 2πneff/λp where neff is the effective index of guided pump
light [Agr13]:

fb =
ωb

2π
=

2neffva

λp
(5.1.2)

The Brillouin scattering process can be explained physically as acoustic waves inducing
a periodic index modulation, which acts as a Bragg grating and scatters the pump light
through diffraction. As the grating is travelling along the fibre at the acoustic velocity
va, the backscattered light is Doppler downshifted in frequency. The process can also be
visualised quantum mechanically as annihilation of a pump photon to create a Stokes
photon and an acoustic phonon.

The waveguide structure affects both optical and acoustic modes, which relaxes the
momentum conservation equations. Therefore, weak forwards-travelling Stokes light
can be generated in fibres, known as guided acoustic wave Brillouin scattering [She85]. The
waveguide structure and the inclusion of core dopants also affect the backwards Brillouin
gain spectrum. Compared to bulk silica which exhibits a Brillouin gain profile with a
single Lorentz peak (typically tens of megahertz wide), Brillouin gain measurements
in step-index fibres have shown multiple-peaked shapes, attributed to dopants and the
presence of numerous different acoustic modes. However, as the pump power increases
and the process becomes stimulated, spectral narrowing occurs and a single peak from the
gain spectrum dominates, imprinting this single peak on the backscattered light. While
Brillouin scattering is the strongest nonlinear effect in optical fibres [Agr13], the gain
bandwidth is very narrow (<100 MHz) and the spectral power density of broadband
pump sources is often insufficient to stimulate this phenomena.

SBS in fibre can be used for various applications including the development of Brillouin
lasers (e.g. for laser gyroscopes), slow-light generation and optical sensing [Zar91, Son05].
A critical parameter is the threshold pump power for the onset of SBS, at which point the
dependence of backscattered light upon incident intensity becomes exponential, compared
to the linear relationship for spontaneous Brillouin scattering. Typically, this is measured
as the pump power for which the scattered signal is 1% of the input power.

The SBS threshold is given by [Smi72]:4

Pth =
21KAeff

gBLeff
(5.1.3)

4We note that the factor of 21 is approximate and other authors have proposed alternative threshold equations.
However, Eqn. 5.1.3 remains widely used and gives reasonable accuracy with experiments [Agr13]. We
therefore adopt this equations to enable comparison of our results with recent published work.
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where Leff is the effective fibre length, Leff = (1− e−αL)/α, to account for loss, α, in a
physical fibre length L, Aeff is the optical mode effective area and gB is the peak Brillouin
gain. K is a polarisation-dependent factor: K = 1 when the pump is coupled into a principal
axis of strongly birefringent fibre and K = 2 when launched at 45◦ to an axis [Dev94]. This
equation also assumes that the pump light spectrum is narrower than the gain bandwidth.

5.1.2 Peculiar Observations in Small-Core PCF

Small-core PCFs offer opportunities for generating nonlinear effects at only modest pump
powers: as highlighted by Eqn. 5.1.3, higher intensities result from reduced effective areas,
lowering the threshold power. Additionally, PCFs can be endlessly single-moded, offering
high brightness and excellent beam quality at visible wavelengths, where conventional
fibres often support multiple modes. Therefore, small-core PCFs should be an ideal
platform for achieving SBS. Recently published results, however, suggest that this is not
the case.

Thresholds up to a factor of five times higher than predicted by established theory have
been reported [Lee02, Dai06, Beu07, McE08b] (Fig. 5.2a), which have been attributed to
differences in optoacoustic interactions in PCF compared to step-index fibres (for which
Eqn. 5.1.3 was originally developed).
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Fig. 5.2: Impact of PCF core diameter on Brillouin scattering at 1550 nm: (a) threshold
intensity-effective length product against core diameter, showing an increase in the
intensity required for SBS with decreasing core diameter (contrary to expected behaviour
from Eqn. 5.1.3); (b) backscattered spectra for a small core (1.2 µm diameter) and large
core (9.3 µm) PCF. Adapted from Ref. [Dai06].

The magnitude and shape of the Brillouin gain spectrum depends on the overlap be-
tween acoustic and optical modes, which is strongly influenced by fibre geometry [Agr13].
Acoustic modes can contain both longitudinal-wave and shear-wave components, although
it is the longitudinal component that dominates the Brillouin response [Dai06]. In conven-
tional step-index fibre the small acoustic impedance mismatch between core and cladding
materials results in weak reflections at their interface and minimal coupling between
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longitudinal and shear waves. Consequently, the acoustic waves which are generated
in the core through electrostriction by intense pump light are principally longitudinal,
resulting in strong Bragg backscattering of light and a single Brillouin peak [Bon02, Dai06].

PCFs with a small silica core exhibit a more complex Brillouin response due to richer
acoustic dynamics. The air-glass boundaries result in strong reflections and coupling
between longitudinal and shear acoustic waves [Dai06]. The resulting hybrid modes
exhibit different acoustic velocities and can each yield different Stokes shifts [Dai06].
Therefore, multiple peaks have been observed in both spontaneous [Lee02, Dai06, Beu07]
and stimulated [McE08b, McE08a] Brillouin spectra (Fig. 5.2b). Dainese et al. also reported
the evolution of the backscattered signal spectrum, with more peaks forming as the
pump power increased, attributed to parametric mixing [Dai06]. The increased shear and
reduced longitudinal wave content in acoustic modes has a minimal contribution to SBS,
raising the threshold [Dai06].

This higher threshold could suggest that PCFs offer no benefit over conventional step-
index fibre for Brillouin scattering applications. However, to date, studies of SBS in PCF
have been restricted to infrared wavelengths and further study of this effect is required to
critically assess this statement.

5.2 Experimental Characterisation of Stimulated Brillouin
Scattering

To explore the impact of pump wavelength on SBS in small-core PCFs, we developed
experiments to characterise Brillouin scattering at 532 nm and 1550 nm. In this section, we
discuss these results and the impact of the pump wavelength on the SBS threshold, in the
context of optoacoustic interactions governed by the PCF structure.

5.2.1 Experimental Setup

Our experimental setup for characterising SBS in PCFs is shown in Fig. 5.3. Pump light
at 532 nm with a linear polarisation state was provided by a single-frequency (15 MHz
linewidth) continuous wave (CW) frequency-doubled Yb:fibre laser. The power was con-
trolled with a variable optical attenuator formed from a half-wave plate (HWP) and polariser.
Light was focussed into the PCF (with 55% coupling efficiency) after a second HWP, which
was rotated to vary the incident polarisation direction. The rear end of the fibre was angle
cleaved (at 8◦) to prevent feedback from Fresnel reflections.

We used a 10 m long small-core PCF, hereafter referred to as PCF-1, which was endlessly
single-moded with air-hole pitch Λ = 1.90 µm and hole diameter d = 0.70 µm, correspond-
ing to core diameter dc = 3.10 µm defined as dc = 2Λ− d (Fig. 5.4). A 50% beam-splitter
enabled simultaneous monitoring of the pump light (for normalising out any pump laser
power fluctuations) and backscattered signal. The transmitted power through the PCF
was also monitored. Additionally, we measured the polarisation of the backscattered
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Fig. 5.3: Schematic of experimental setup for characterisation of stimulated Brillouin
scattering in PCF.

5 μm 2 μm

Fig. 5.4: SEM images of PCF-1 microstructure at different magnifications. The PCF
parameters – hole diameter d = 0.70 µm, pitch Λ = 1.90 µm, effective core diameter
dc = 3.10 µm – are average values, as manufacturing imperfections led to slight variations
between hole sizes.

signal so corrections could be applied to account for the small polarisation-dependence of
the beamsplitter.

5.2.2 Initial Characterisation

The linear pump polarisation was aligned with a principal axis of the PCF and as the
pump power increased, characteristic SBS behaviour was observed. The transmitted power
increased linearly with increasing pump power until a threshold was reached, after which
the transmitted power saturated and the backscattered signal increased sharply (Fig. 5.5a).
The threshold power was calculated as Pth = 220 mW, as described in Section 5.1.1. Above
threshold, additional pump power was reflected; the nonlinear process effectively created
a Brillouin mirror.

Similar results were obtained when the input polarisation was rotated through 90◦ to
align with the other principal axis of the fibre, although when aligning the polarisation
between two fibre axes (∼45◦ rotation), the threshold and saturated transmitted power
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Fig. 5.5: Variation of Brillouin backscattered and transmitted powers in PCF-1 with pump
power, for linearly polarised light launched along a fibre principal axis (0◦) and between
axes (45◦). SBS thresholds are shown, highlighting a factor of two threshold reduction
when light is polarised along a fibre axis.

were approximately doubled (Fig. 5.5a). This behaviour is typical of a strongly birefringent
fibre [Dev94]. However, an ideal sixfold symmetric PCF microstructure should not exhibit
birefringence [Ste01].

The apparent strong birefringence in PCF-1 is therefore attributed to structural asym-
metry from imperfections in the PCF microstructure [McE08a], which can be seen in the
SEM cross-sectional image (Fig. 5.3b). We further examined the Brillouin gain dependence
on the input polarisation angle (with 0◦ defined as polarisation along a fibre principal
axis) by rotating the HWP (Fig. 5.5b). A sinusoidal variation in backscattered and trans-
mitted powers was seen above threshold, due to the polarisation dependence of Brillouin
gain [Dev94]. Below threshold the transmission was independent of the HWP angle,
confirming the absence of polarisation-dependent loss in the fibre.

For PCF-1, we measured a loss value of 61 dB km−1 at 532 nm from cut-back mea-
surements and a value of Aeff = 4.73 µm2 was extracted from numerical modelling
based on the PCF structure (discussed in Section 5.2.4). Using these properties and our
recorded threshold values, the peak Brillouin gain was calculated as 4.8× 10−11 m W−1.
This value is in good agreement with typical gain values recorded for silica fibres:
3− 5× 10−11 m W−1 [Agr13].

Brillouin backscattered light is Stokes shifted from the pump wavelength according
to Eqn. 5.1.2. This shift was measured experimentally using a scanning Fabry-Pérot
interferometer, monitoring the backreflected light containing both Brillouin backscattered
light and a small component of pump light from Fresnel reflections off the fibre front facet.
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Fig. 5.6: Variation of Brillouin backscattered and transmitted power with pump polarisa-
tion (angle measured relative to a fibre principal axis). Above the SBS threshold, strong
variation is observed due to the polarisation-dependent Brillouin gain, although the
power is constant below threshold, showing no polarisation-dependent fibre loss.

A Fabry-Pérot interferometer (or etalon) is a linear optical cavity with two parallel highly
reflective mirrors (that are back-polished to couple a fraction of light in/out to be mea-
sured, and back-angled to prevent spurious interference), resulting in sharp transmission
resonances where the frequency separation between them is called the free spectral range
(FSR):

FSR =
c

2naird
(5.2.1)

where nair ∼ 1 and d is the mirror spacing. By periodically varying d with a piezo actuator
and recording the transmitted intensity on a photodiode, the temporal response can be
mapped to the optical spectrum of the light. The scanning interferometer can enable
significantly higher spectral resolution than an optical spectrum analyser [Hec02]. The
resolution is limited by the cavity finesse:

Finesse =
π(R1R2)0.25

1− (R1R2)0.5 (5.2.2)

where R1 and R2 are the reflectivities of the cavity mirrors.

With an interferometer FSR of 42.2 GHz, we recorded a Brillouin shift of 33.5 GHz
(Fig. 5.7b). Using neff = 1.456 (obtained from modelling), the measured shift relates to
an acoustic velocity of ∼6100 m s−1, corresponding reasonably well and within 2% of
the known longitudinal acoustic velocity in silica of ∼5960 m s−1 [Agr13]. The shape
of the Stokes signal (Fig. 5.7a) was measured by reducing the interferometer FSR to 2.9
GHz, with 50 MHz resolution (limited by interferometer finesse). While the measured
Stokes peak width of 50 MHz was resolution-limited, we observed no asymmetry or
multiple-peaked structure. The backscattered signal was also observed using a CCD
camera: the Gaussian-shaped beam confirmed that it propagated as a fundamental core
mode (Fig. 5.7c).
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Fig. 5.7: Stimulated Brillouin backscattered spectrum in PCF-1, measured using a scan-
ning interferometer with: (a) 2.9 GHz free spectral range to show a single peaked Brillouin
spectrum; (b) 42.2 GHz free spectral range to indicate the Brillouin frequency downshift
from the pump. Measurements were made with 0.5 W pump power aligned to a PCF
principal axis and the backscattered beam profile observed on a CCD camera (c) showed
a single fundamental mode profile.

The observation of an isolated single Stokes peak and the agreement between measured
and theoretical threshold power at 532 nm are distinct from recent reports of Brillouin
scattering measurements in small-core PCF at ∼1550 nm [Dai06, McE08b, McE08a, Beu07,
Lee02]. Therefore, to make comparative measurements we developed a narrow linewidth
(1 MHz) pump source at 1550 nm based on a external-cavity diode laser amplified in an
erbium-doped fibre amplifier (the remainder of the setup was the same as Fig. 5.3, but
replacing the optics with components for 1550 nm operation). Unfortunately, SBS could
not be observed in PCF-1 at infrared wavelengths due to high confinement loss in the fibre
at longer wavelengths.5

5.2.3 Comparison between 532 and 1550 nm Pump Light

To compare stimulated Brillouin scattering in small-core PCF pumped at visible and
infrared wavelengths, we performed characterisation measurements on a second 40 m long
PCF with a similar microstructure (PCF-2: d = 0.55 µm and Λ = 1.48 µm , corresponding
to dc = 2.41 µm , as shown in Fig. 5.8). This fibre had a greater number of air holes layers
than PCF-1 to reduce the confinement loss. Additionally, PCF-2 was fabricated many
years after PCF-1, once fabrication technology had become more established. Therefore,
the microstructure showed better uniformity and lower loss than PCF-1 (compare Figs. 5.4
and Fig. 5.8).

The measurements outlined in Section 5.2.2 were repeated with this PCF and both

5Since the core of a PCF has the same refractive index as the region beyond the finite periodic air-hole
cladding, guided modes are actually leaky modes and experience confinement loss from the core. The
magnitude of confinement loss depends on the number of air hole layers and modal area (which is related
to the wavelength) [Fin03].
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10 μm 2 μm

Fig. 5.8: SEM images of PCF-2 microstructure at different magnifications. The PCF
parameters are hole diameter d = 0.55 µm, pitch Λ = 1.48 µm and effective core
diameter dc = 2.41 µm.

Pump Wavelength λ Λ/λ Aeff neff Loss α Threshold Power

Theory Experiment
(nm) (µm 2) (dB km−1) (mW) (mW)

532 2.79 3.53 1.45 44 70 69
1550 0.96 7.87 1.41 153 240 1160

Table 5.1: PCF-2 properties at 532 nm and 1550 nm. Theoretical and experimental thresh-
old values are in good agreement at 532 nm, but not at 1550 nm.

the 532 nm and 1550 nm pump laser. PCF-2’s microstructure was more uniform and
symmetric than PCF-1 and the pump polarisation angle was found to have a minimal
effect on the Brillouin gain. This behaviour is typical of a low birefringence fibre, for which
a factor of K = 1.5 should be used in threshold calculations [Dev94]. The measured loss
at each wavelength and the effective area and index values obtained from modelling are
shown in Table 5.1. Using Eqn. 5.1.3, the predicted threshold values were 70 mW at 532 nm
and 240 mW at 1550 nm (while the peak Brillouin gain is approximately independent of
wavelength [Agr13], the effective area and loss for PCF-2 are greater at 1550 nm leading to
a higher SBS threshold).

Experimentally we measured threshold values of 69 mW at 532 nm, in excellent agree-
ment with theoretical calculations. The threshold at 1550 nm, however, was recorded as
1160 mW, ∼5 times higher than predicted.

The spectral shape and frequency shift of the SBS Stokes component at 532 nm and
1550 nm (recorded with the interferometer) are shown in Fig. 5.10a. The 11.0 GHz Stokes
shift measured at 1550 nm corresponded to an acoustic velocity of ∼6050 m s−1 and
the 33.4 GHz shift at 532 nm indicated a velocity of ∼6110 m s−1, both in reasonable
agreement with the known velocity in silica [Agr13]. The Brillouin signal at 532 nm was
a symmetric single peak showing no substructure, similar to the shape observed with
PCF-1. In contrast, the Stokes peak at 1550 nm showed strong asymmetry. While the
limited resolution and sensitivity of our scanning interferometer prohibited a detailed
analysis of the structure and acoustic mode content, the asymmetry at 1550 nm suggested
an interaction between the optical field and the numerous acoustic modes that each
gave slightly different frequency shifts. These observations support reports in literature
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Fig. 5.9: Variation of Brillouin backscattered power with pump power launched into the
fibre at 532 nm and 1550 nm pump wavelengths.
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Fig. 5.10: Contrasting SBS characteristics in PCF-2 for 532 nm and 1550 nm pump wave-
lengths: (a) stimulated Brillouin backscattered spectra showing strong asymmetry for
infrared light; (b) modal intensity profiles showing greater overlap with the cladding air
holes at longer wavelengths.
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of multiple-peaked and high-threshold SBS behaviour in small-core PCFs at 1550 nm,
whereas at a pump wavelength of 532 nm, we saw no such irregularity.

We discuss these observations in the context of optoacoustic interactions in the PCF
in Section 5.2.5, after a brief review of modelling methods for understanding the optical
mode distributions.

5.2.4 Modelling Mode Shapes

The optical properties of PCFs can be accurately determined using the vector analytical
effective index model introduced in Section 2.2.2, which reduces the complex PCF mi-
crostructure to an equivalent step-index fibre geometry. This approach is limited, however,
if we wish to visualise the modal profile and the interaction with air holes, since the
method assumes a continuous cladding with a constant refractive index (resulting in the
intensity profile in Fig. 5.11a for PCF-2 at 532 nm).

For an improved model, we used the open-source software package MIT Photonic
Bands. Briefly, the software uses a block conjugate gradient method to find the eigenmodes of
Maxwell’s equations for a dielectric structure given periodic boundary conditions [Joh01].
A PCF microstructure is not perfectly periodic, however, since the core is a defect in the
photonic crystal structure where the field will localise. Therefore, a supercell approximation is
used: a large computational cell is constructed including numerous unit cells surrounding
the defect, so its boundaries become irrelevant [Joa08]. This increases the computational
cost, although the use of this approach has become a widely used technique for accurately
modelling PCFs.

To improve the accuracy of simulations using MIT Photonic Bands, the dielectric struc-
ture was created from an SEM image of the PCF microstructure, thus taking into account
imperfections in the manufacturing process compared to a perfect lattice. Fig. 5.11b shows
a computed mode profile for PCF-2 at 532 nm using this method, indicating that light
is concentrated in the high-index silica bridges in the cladding and absent from the air
holes. This is in much better agreement with the expected behaviour of light in such a
structure [Joa08], hence this modal modelling approach was adopted throughout this
chapter.

5.2.5 Optoacoustic Interactions

To explain our observations, we consider the interaction of optical and acoustic waves in
PCFs. While weak backscattering will occur spontaneously at all transverse positions in
the fibre geometry (i.e. in both silica core and microstructured cladding regions) due to
thermally-created elastic waves, we focus here on stimulated Brillouin backscattering and
optically-driven acoustic waves by electrostriction. The magnitude of optoacoustic interac-
tion is governed by the overlap of optical and acoustic modes, where wave dynamics are
related to the local environment with different behaviour in the core and cladding regions.
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Fig. 5.11: Modal intensity profiles at 532 nm for PCF-2 computed by: (a) vector analytic
effective index method; (b) MIT Photonic Bands. The effective index method simplifies
the structure as a step-index fibre (equivalent core region shown by black dashed line)
and cannot correctly predict the field distribution.

To elucidate the influence of wavelength on the SBS response, we introduce dimension-
less length scales: Λ/λ and Aeff/Acore, where the effective optical mode area is defined
in Eqn. 1.3.19 and the physical core area is Acore = πd2

c/4 (= 4.56 µm2 in PCF-2). Ad-
ditionally, we note that acoustic waves spread out inside the fibre by diffraction, with
a characteristic acoustic diffraction length ld = Acore/λs where λs is the wavelength of
sound in the fibre, related to the free-space pump wavelength λ by λs = λ/(2neff) [Zel86].
The impact of diffraction is related to the lifetime of acoustic phonons Ta through the sound
attenuation length la = vaTa; the diffraction efficiency can then be expressed as [Zel86]:

la

ld
=

λvaTa

2neff Acore
(5.2.3)

At 532 nm, Aeff < Acore (Table 5.1) suggesting tight core confinement of the optical mode,
as verified by the computed mode profiles (Fig. 5.10b). Beating between spontaneously
backscattered light and pump light drives acoustic waves of longitudinal strain along the
fibre axis, Bragg scattering additional pump light backwards. Further beating amplifies
the acoustic wave yielding strong stimulated Brillouin scattering. Localisation of the
optical mode to the core suggests weak interaction with cladding acoustic waves and
consequently, negligible SBS effects here. Therefore, the backscattered spectrum shows a
single peak corresponding to Doppler shifted light from longitudinal waves travelling at
the speed of sound in silica [Dai06].

At 1550 nm, however, the optical field penetrates the cladding significantly since Aeff >

Acore (Table 5.1), suggesting stronger interaction in the holey region. Light cannot be
completely concentrated in the silica if λ > Λ, thus the pump field overlaps air holes
(Fig. 5.10b), which reduces the net Brillouin gain since air does not contribute to SBS here.
Additionally, the high acoustic impedance contrast between silica bridging sections and
air holes yield strong reflections that couple longitudinal and shear waves. This results in
numerous hybrid acoustic modes which can have significant shear components and each
give slightly different frequency shifts. Consequently, a multiple-peaked backscattered
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spectra is formed and the Brillouin gain is reduced as the shear components do not
significantly modify the local refractive index to form a Bragg grating [Dai06, Lau05].

In addition, even acoustic waves formed in the core will be affected more strongly by
the cladding at longer wavelengths. From Eqn. 5.2.3, we see that the diffraction efficiency
depends on λ and Ta (which increases with λ) so the spreading of acoustic strains outwards
from the core at 1550 nm will be more than 3 times greater than at 532 nm, reducing the
overlap with the optical mode. Furthermore, core-generated acoustic waves which spread
out will experience longitudinal-shear component coupling at the glass-air interfaces,
forming hybrid modes which each have a different acoustic spectrum. This yields multiple
spectral peaks and a net reduction in Brillouin gain. It has also been suggested that the
air-hole cladding layer can act as a resonant cavity to directly modulate backscattered
light, imposing additional peaks on the backscattered spectrum [McE08b, Bon02].

We suggest that the multiple peaks which are expected in the Stokes spectrum at 1550 nm
contribute to the asymmetric shape in our scanning interferometer trace (Fig. 5.10a), since
we are limited by measurement resolution. A reduced Brillouin gain was also observed at
infrared wavelengths as a significantly higher SBS threshold than predicted theoretically.
We briefly note that another explanation has been proposed for increased SBS thresholds
in PCF by Ref. [Lee02]: structural variations along the fibre due to manufacturing imper-
fections. This effect, however, would be expected to increase the threshold at both 532 nm
and 1550 nm, which is not supported by our measurements. Our conclusions are similar
to works considering the impact of varying the PCF core diameter at a fixed infrared
wavelength [Dai06, McE08b] since both situations depend on Λ/λ and Aeff/Acore ratios.

5.2.6 Is PCF Advantageous for Stimulated Brillouin Scattering?

While many reports to date have suggested that the enhanced effective nonlinearity in
small-core PCFs is negated by complex acoustic dynamics, raising the SBS threshold, we
believe that PCF does offer advantages over conventional fibre for exploiting SBS if shorter
wavelength pump light is used.

We adopt the threshold power-effective length product PthLeff as a figure of merit and com-
pare PCF-2 to a conventional step-index fibre (with Aeff = 30 µm2 and α = 0.2 dB km−1).
Table 5.2 shows that for an arbitrary length of fibre, the SBS threshold in small-core PCF
pumped at 1550 m will exceed the threshold in a step-index fibre, suggesting no advantage
to using PCF. However, by using a 532 nm pump source with the same PCF, the threshold

Step-Index Fibre PCF-2 PCF-2
(∼λ independent) (λ = 1550 nm) (λ = 532 nm)

19.7 25.1 2.3

Table 5.2: Figures of merit – threshold power-effective length product (W m) – for SBS
generation in conventional and small-core photonic crystal fibre. A lower value is better,
indicating a reduced SBS threshold.
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can be reduced compared to step-index fibre by nearly an order of magnitude, which
is attractive for SBS applications such as slow-light generation and the development of
Brillouin lasers.

5.3 Brillouin PCF Laser

To exploit the benefits of small-core PCF for low-threshold SBS, we constructed a Brillouin
laser. Hill, Kawasaki and Johnson were the first to demonstrate a Brillouin fibre laser
in 1976 [Hil76a] and interest continues to this day in Brillouin scattering as a laser gain
medium, principally for sensing applications [Agr13]. In this section, we report a simple
linear-cavity Brillouin laser and study the temporal output properties.

5.3.1 Laser Design

We adapted our SBS characterisation setup to form a Fabry-Pérot laser cavity by planar
cleaving the ends of the PCF (here, we returned to using PCF-1) to provide feedback
(Fig. 5.12a). Using nair = 1 and neff = 1.456 at 532 nm, the Fresnel reflectivity of each
fibre facet was calculated as 3.4%. The pump polarisation was aligned to a fibre axis to
maximise the Brillouin gain and we note that the fibre length was ∼9 m, slightly shorter
than in Section 5.2.2 after a cut-back loss measurement.

The Brillouin laser threshold was recorded to be 130 mW (Fig. 5.12b). This was lower
than the threshold for SBS generation without feedback (measured as 220 mW in Sec-
tion 5.2.2 and predicted to increase to∼245 mW due to the length reduction here according
to Eqn. 5.1.3). It is expected that the Brillouin laser spectrum will differ from the single-
pass SBS spectrum due to gain narrowing [Agr13], although this could not be resolved due
to our limited interferometer resolution of 50 MHz and the measured laser spectrum was
identical to Fig. 5.7a. We did, however, confirm that only one Stokes order was generated:
the total cavity feedback (3.4%× 3.4% = 0.1%) was insufficient to cause cascaded Brillouin
scattering to higher orders.

While a number of works have considered Brillouin PCF lasers, in both ring and linear
cavities [Lee02, Dav02, dM04], their temporal output properties remain less well explored.

5.3.2 Temporal Dyamics

Brillouin fibre lasers can exhibit a rich variety of temporal dynamics [Lec96].6 First, how-
ever, we consider the dynamic response of single-pass SBS. In the absence of feedback,
Stokes light can exhibit temporal structure (despite CW-pumping) arising from amplifi-
cation of spontaneous scattering [Gae91] and relaxation oscillations [Joh71]. Relaxation
oscillations can be physically understood by periodic pump depletion and the finite non-
linear medium length: towards the fibre input, the pump depletes as the back-propagating

6We thank Prof. Carlos Montes and Dr Eric Picholle at the University of Nice, France for useful discussions
regarding the temporal dynamics of Brillouin lasers.

181



Chapter 5 Stimulated Brillouin Scattering in Photonic Crystal Fibre

0.0 0.2 0.4 0.6 0.8 1.0
Launched Pump Power (W)

0.0

0.2

0.4

0.6

0.8

1.0

O
ut

pu
t 

Po
w

er
 f
ro

m
 F

ib
re

 (
W

)

Threshold
0.13 W

532 nm Pump

LensPCF
50%

Beamsplitter

Planar Cleaved Ends
(~3.4% Reflectivity)

(a) (b)

Fig. 5.12: Linear-cavity Brillouin laser using 9 m PCF-1: (a) schematic; (b) pump power
launched into the PCF versus laser output power from the fibre. To extract the laser
output from the system, light was taken after the beamsplitter, corresponding to a power
reduction of 50%.

Stokes signal grows, reducing the gain; subsequent sections along the fibre experience
lower gain from the forward-propagating depleted pump wave so additional backscat-
tered Stokes power is weaker; the depleted pump region eventually passes out the end of
the fibre as after initial depletion, in the absence of a strong Stokes signal, newly-injected
pump light remains stronger; the process then repeats, creating low-modulation-depth
oscillations related to the fibre length. This temporal behaviour is stochastic and appears
as noisy fluctuations [Gae91]. We verified this in our experiment by observing the SBS
signal in Section 5.2.2 on a photodector and oscilloscope.

The situation is very different in a Brillouin laser, where feedback is introduced to the
SBS process, which can stabilise the oscillations leading to pulsed operation [Kaw78, BJ85,
Dam93]. Specifically, the numerous longitudinal modes of a cavity within the Brillouin
gain bandwidth (N∼13 in our experiment, using N ∼ 2L/(5λ2 × 1012) [Mon99]) are
coupled by power transfer between pump and Stokes light, mediated by acoustic waves
throughout the cavity. This introduces a phase relationship between them, partially
locking them and generating periodic pulsations related to the cavity round-trip time.
This phenomena has been referred to as self or partial mode-locking [Kaw78].7

Experimentally, we observed periodic pulse trains from our Brillouin PCF laser (Fig. 5.13a)
where the pulse duration and repetition rate varied with pump power (Fig. 5.13b), be-
tween 9–27 ns and 11.2–12.2 MHz, respectively. The fundamental frequency for the ∼9 m
Fabry-Pérot cavity was ∼11.5 MHz. Observation of greater repetition frequencies may
seem concerning therefore, suggesting that a pulse is traversing the cavity faster than the
speed of light in the medium. Fortunately, this was not a violation of special relativity and
can be explained within the framework of slow- and fast-light effects: Brillouin gains acts

7An additional, distinct mode-locking technique for Brillouin lasers is to generate multiple Stokes orders
through cascaded Brillouin scattering, then phase-lock these to provide a wider bandwidth and the
possibility of generating ultrashort pulses [Lug72, Dam91].
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Fig. 5.13: Self-mode-locked temporal dynamics in our Brillouin PCF laser: (a) measured
pulse trains, where the (b) pulse duration and (c) repetition rate vary with pump power.
The trains in (a) correspond to the red and green ringed points in (b). Pulse-to-pulse
properties showed flucations; the plotted points (blue dots) are the averaged values and
the range is indicated by the shaded region.

as a narrowband spectral resonance, which can induce a large change in the group index,
changing the delay of a pulse envelope travelling through the fibre [Son05]. Additionally,
amplification of the leading edge of the Stokes pulse from the counter-propagating pump
wave (and correspondingly, attenuation of the trailing edge due to pump depletion) results
in an additional time shift [Pic91]. These pulses have thus been referred to as superlumi-
nous dissipative Brillouin solitons, confirmed by numerical simulations using a coherent
three-wave model that included pump and Stokes light, in addition to acoustic waves with
finite phonon lifetime [Mon99]. Unequal leading-edge amplification and trailing-edge
attenuation explain the variations in pulse duration.

While stable pulse trains could be measured, they exhibited fluctuations in pulse prop-
erties over time (shown by the shaded regions in Fig. 5.13 after recording numerous
pulse trains at separate times). Additionally, the pulses dispersed every few seconds,
before quickly forming a stable train again. This long-term instability relates to the weak
mode coupling of the process (hence the term partial, rather than full mode-locking)
which is regularly perturbed by fluctuations, such as thermally-induced changes in cavity
length [Dam93]. Long-term-stable mode-locked Brillouin pulses have been demonstrated,
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Chapter 5 Stimulated Brillouin Scattering in Photonic Crystal Fibre

however, by including an acousto-optic modulator in the cavity to stabilise the modula-
tion [Kaw78].

These periodic pulsations were observed for pump powers over the laser threshold,
up to ∼300 mW, where this value corresponded to entering the region of significant
single-pass SBS (as shown in Section 5.2.2). Above this pump power, the temporal output
became constant. In this case, the pump light was always depleted by the end of the fibre,
saturating the Brillouin gain and forming a time-independent Brillouin mirror [Mon99].

5.4 Summary

In this chapter, we characterised SBS in small-core PCF and observed a reduction in SBS
threshold at 532 nm compared to conventional step-index fibre. The benefits of PCF over
step-index fibre for Brillouin applications are wavelength-dependent however, due to
the spectrally dependent optical mode area increasingly overlapping with air holes at
longer wavelengths. Increased interaction between the optical mode and acoustic waves
in the cladding reduces the Brillouin gain, and ‘hard’ air-silica boundaries at the holes
couple longitudinal and shear acoustic waves to form a family of hybrid acoustic modes,
in contrast to a dominant longitudinal elastic wave for larger core fibres.

We demonstrated this benefit by developing a proof-of-principle Brillouin PCF laser
and analysing the temporal dynamics that arise naturally for this phenomena. For certain
pump powers, stable pulse trains with tunable nanosecond pulse durations and megahertz
repetition rates could be obtained. Conceptually, this is a simple approach to pulse
generation, requiring only a narrow linewidth pump source and short (< 10 m) lengths
of PCF. However, the long-term stability was poor, prohibiting practical applications of
such a source without additional stabilisation (e.g. intracavity acousto-optic modulation),
which add complexity and cost.

Further work will consider the temporal dynamics in regimes with hybrid acoustic
modes, which affects the power transfer between pump and Stokes light and thus, could
alter the coupling between modes. Additionally, we note that acoustic phenomena in
fibre can have a significant effect on pulse dynamics. For instance, acoustic waves have
been observed to affect pulse spacing in a mode-locked fibre laser [Dia91, Pil95], which
can lead to self-organisation of multiple pulses in a single cavity round trip for high
repetition rate harmonic mode-locking up to∼1 GHz in single-mode fibres [Gru93, Guy94].
The development of small-core PCF enables even greater acoustic-driven modulation
frequencies, which has recently been applied to induce harmonic mode-locking at >2 GHz
repetition rates [Pan15].

These results highlight that in addition to enabling new regimes of optical parameters,
PCFs offer novel acoustic properties, which can be detrimental or usefully exploited,
depending on the desired optical response. This adds acoustic-driven optical interactions
to the toolbox of nonlinear fibre optic effects which are available when designing photonic
systems, although further work is required to quantify and exploit such phenomena.
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6
CONCLUSION AND OUTLOOK

We began this thesis by noting that rapid progress has been achieved in fibre-optic and
laser technology since its origins in the mid-twentieth century. Today, short-pulse fibre
lasers and optical fibres are mature technologies, which have had a revolutionary impact
on science, medicine and industry, yielding palpable benefits to society (the Internet
is perhaps the most obvious example). The significance of this, alongside many other
important optical developments is spotlighted this year by the United Nations designation
of 2015 as the ‘International Year of Light and Light-based Technologies’ to celebrate such
achievements [Dud15].

Despite great progress, however, end-users requirements for laser systems continue
to grow as the breadth of fibre laser applications increases, driving further research.
This thesis has explored the nonlinear optical properties of emerging nanomaterials
and fibres and their opportunities for advancing short-pulse laser technology. In this
concluding chapter we briefly summarise the main results we have achieved and place our
contributions in a broader context. We also offer a personal outlook for future directions
in this field.

Long-Cavity Lasers

In Chapter 3 we introduced a long-cavity (near-kilometre length) fibre laser architecture,
extending established concepts of dispersion and nonlinearity management and frequency-
swept pulses to increase the parameter space that can be offered by mode-locked fibre
lasers. Our design produced stable pulse trains with hundreds of kilohertz repetition rates
and nanosecond-duration pulses with a giant chirp. This concept enables pulse properties
to be varied over many orders of magnitude by simply varying the cavity length.

The low repetition rate and high chirp of such pulses are ideal for chirped pulse ampli-
fication schemes (eliminating the need for pulse stretchers and pulse pickers), although
concerns had been raised about the compressibility of such a giant chirp. While we agreed
that conventional bulk diffraction grating-based chirp compensation was impractical, we
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Chapter 6 Conclusion and Outlook

were able to demonstrate compression (and correspondingly, peak-power enhancement)
by a factor of ∼100 using a custom-engineered chirped fibre Bragg grating (CFBG).

Is this laser design a serious competitor to existing chirped-pulse amplification (CPA)
technologies? Unfortunately, the greatest asset of the design is also its main drawback: full
fibre integration. While the all-fibre design achieves a compact, robust and alignment-free
system, compression in a long CFBG and high peak power pulse propagation in subse-
quent fibre pigtails can lead to significant nonlinear effects (e.g. self-phase modulation
and stimulated Raman scattering). These phenomena can distort the pulse, limiting the
maximum peak power that can be usefully achieved to ∼10 kW. A possible solution,
however, is to consider large-mode area fibres, where the increased modal area decreases
the intensity and thus, the nonlinear phase accumulation.

Long-cavity lasers with a low repetition rate and high pulse-energy-to-average-power
ratio are useful, however, for simple, compact low-threshold supercontinuum generation
systems. We showed that compressed pulses at a low average power of ∼30 mW were
sufficient for generating broadband light spanning over an octave in a photonic crystal
fibre (PCF), with applications in spectroscopy and optical device characterisation. Similar
low-power white light sources are already available commercially, and our architecture
could be of interest here, perhaps competing with Q-switched microchip lasers.

Numerical simulations were used pervasively during the design of this laser architec-
ture, following the development of computationally efficient models for calculating fibre
properties and modelling pulse propagation in Chapter 2. These techniques are invaluable
in research and industry for laser design and continued development will extend the
validity of numerical models and enable new parameter spaces to be efficiently explored.

Modelling also provides additional insight into the underlying physics and enabled us
to observe persistent dark soliton-like structures in the radiation build-up dynamics for
our long-cavity laser. We note that long-cavity lasers can be considered as an interesting
nonlinear system where the dephasing and extreme number of cavity modes lead to novel
nonlinear interactions, which can be controlled by dispersion. Due to similarities in the
mathematical treatment (based on the nonlinear Schrödinger equation) of fibre optics with
wave interactions in a range of nonlinear dispersive physical systems (e.g. hydrodynam-
ics and Bose-Einstein condensates) fibre lasers provide a convenient, table-top platform
for exploring nonlinear physics to provide cross-discipline insight. Rogue waves are a
particularly successful example: a poorly understood and potentially dangerous phe-
nomena in oceans with fundamental similarities to statistical fluctuations of modulation
instability-driven supercontinua [Sol07].

While the applications of such studies may not be obviously apparent, we argue that
such curiosity-driven research is important to advance our understanding of nonlinear
physics. Additionally, the history of science is filled with invaluable technological concepts
arising tangentially to seemingly interesting-but-purposeless observations (arguably, the
laser itself is ultimately a by-product of Charles Townes’s initial interest in microwave
spectroscopy [Tow99]). Therefore, further studies of nonlinear wave dynamics in lasers
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offer the exciting possibility of uncovering new operating regimes with tangible benefits
for pulsed lasers.

Nanomaterials

Two-dimensional (2D) nanomaterials were the focus of Chapter 4, specifically focussing
on few-layer transition metal dichalcogenides (TMDs). Despite the first fabrication of these
materials being reported in the 1960s, their potential for optoelectronic applications
remained unexplored until the graphene-led renaissance in 2D materials started in 2004.
Today, intense global research activity is focussed on this topic, searching for new physics
and technological breakthroughs, with significant backing from governments, funding
agencies and even the mass media. Our interest centred on the photonic applications of
these nanomaterials and characterisation of their nonlinear optical properties.

We developed a microscopy technique enabling linear imaging of monolayer and few-
layer MoS2 flakes and harmonic generation imaging simultaneously, offering significantly
improved contrast. Second- and third-harmonic generation were found to be ideal tools
for characterising nanomaterial samples, enabling the crystal symmetry, layer count and
magnitude of nonlinear response to be probed non-destructively. We plan to extend
this technique to other transition metal dichalcogenides (MoSe2, WS2 etc.) and critically
compare their nonlinear response, in addition to advancing the technique to enable tuning
of the pump wavelength, permitting spectroscopy to explore the impact of strong excitonic
resonances that are a particularly novel feature of such materials.

Few-layer MoS2 and MoSe2 were then demonstrated to behave as ultrafast wideband
saturable absorbers for mode-locking and Q-switching fibre lasers across the near infrared
region from ∼1 to 2 µm . This may seem surprising given the materials’s bandgaps
correspond to visible wavelengths. We therefore proposed a mechanism of edge-state sat-
urable absorption to explain this, which is compatible with early fundamental absorption
spectroscopy studies. We hope to further investigate this mechanism and consider how to
engineer the edge states through different fabrication procedures. We also plan to develop
visible lasers using Pr:ZBLAN fibre to operate at the resonant bandgap wavelength of
such 2D material saturable absorbers, providing much-needed compact pulse sources for
biological imaging applications.

Despite phenomenal research interest in nanomaterials, their commercial applications
have been limited to date. Only a small number of mode-locked lasers are available on
the market that include nanomaterial saturable absorbers, all of which are from university
spin-out companies. That said, following our work, we have enjoyed discussions with
industrial laser manufacturers on this topic; their response has always indicated great
scientific interest and commercial possibility of such wideband and flexible intensity-
dependent materials, coupled with resistance to implementing them until the technology
becomes more established and their reliability is proven to the same degree as incumbent
SESAM technology. The non-saturable losses of current 2D material absorbers, typically
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above ten percent for the devices in this thesis, are also too high, limiting the laser
efficiency which could be achieved. These issues are both pressing research problems to
be addressed.

Beyond saturable absorbers, will 2D nanomaterials have a revolutionary technological
impact in photonics to match the current research investment in this field? The global
fascination with such low dimensional systems is understandable: they offer a playground
for physicists to explore new effects (e.g. the quantum hall effect [Nov04]) and optical
properties unlike conventional bulk materials. Additionally, manufacturing techniques are
now available (based on liquid phase exfoliation) to scale fabrication to industrial quanti-
ties [Pat14] and the resulting materials are very flexible and well-suited for integration
with a variety of optical components.

While graphene is the most celebrated 2D material, the absence of a bandgap raises
serious problems for optoelectronic applications requiring electronic control. Monolayer
TMDs are therefore promising alternatives, with direct bandgaps at visible wavelengths.
Proof-of-principle experiments have already highlighted their possible applications in
transistors and photodetectors [LS13], and as an active laser material [Wu15]. The diffi-
culty will be in translating these controlled laboratory demonstrations to robust, mass-
manufacturable devices. We also note a need for further critical study to compare and
characterise emerging materials: within the literature, reported values for the magni-
tude of χ(3) in graphene vary over six orders of magnitude [Che14]! This is related, in
part, to attempts to apply experiments and models for bulk materials directly to their 2D
counterparts, sometimes with questionable validity. Further theoretical work is therefore
essential to complement continued experiments for improving our understanding of these
structures.

To achieve true technological success, it is also important to demonstrate both technical
and economic superiority over incumbent electrical and optical materials. The level of
sunk investment in silicon and III-Vs may make this challenging, although the ferocious
extent of the global research effort and the significant promise of 2D TMDs suggest that
they certainly cannot be ignored from future technology predictions.

We foresee much continued research interest here too. Van der Waals heterostructures
appear to be the next frontier: combining layers from a variety of different 2D materials
to create new crystal structures [Gei13]. This could combine the advantages of each
constituent material and offers a platform for engineering new materials to suit particular
applications. This is an exciting prospect, with new physics to be discovered, but time
will tell whether the technological impact is as transformative as many claim.

Acoustic Interactions in Photonic Crystal Fibre

Our investigation of stimulated Brillouin scattering (SBS) in PCF in Chapter 5 revealed the
importance of the acoustic properties of a fibre in determining the full nonlinear optical
response. We showed that the ratio of excitation wavelength to core size and hole pitch
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determined the excited acoustic mode content, with very different acoustic behaviour in
the solid core and microstructured cladding and coupling at the air-glass interfaces. This
resulted in five times greater SBS threshold for 1550 nm pump light than expected from
widely-accepted theory, suggesting that the existing theoretical models need augmenting
to be universally applicable to new microstructured fibre designs.

With careful choice of pump wavelength for a small-core PCF, the increased core con-
finement enhanced nonlinear interactions and reduced the SBS threshold compared to a
standard step-index fibre. We then exploited this to develop a Brillouin PCF laser and anal-
ysed the temporal dynamics, showing that under certain conditions a train of nanosecond
pulses could be generated at megahertz repetition rates in a very simple setup. Further
work will consider the role of acoustic interactions on such temporal dynamics.

In general, the novel acoustic properties of PCF are often overlooked in favour of
focussing on the flexibility they offer for dispersive and nonlinear effects. We suggest
that nonlinear optoacoustic interactions could be an additional asset to the toolkit of
nonlinear phenomena which are used for improving short-pulse lasers. Recent progress
has highlighted the use of acoustic resonances in PCFs to harmonically mode-lock a fibre
laser at gigahertz repetition rates [Pan15] and we believe there is further progress to be
made here for controlling cavity dynamics without expensive electrical modulators.

Final Remarks

The fact that short-pulse fibre laser research remains such an active and vibrant field,
despite the maturity and existing market share of current fibre technology, is a testament
to the importance of such devices and the wealth of opportunities that lie ahead. We hope
that the work detailed in this thesis represents a small contribution to showing what can
be achieved by exploiting nonlinearity. Looking forwards, there is a great deal of exciting
work to be done.
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fibre optique micro-structurée, JNOG’35, Optique Bretagne (2015).
R. I. Woodward, E. Picholle, and C. Montes.

8. Characterization of the nonlinear susceptibility of monolayer MoS2 using second-
and third-harmonic generation microscopy, Submitted (2016).
R. I. Woodward, R. T. Murray, C. F. Phelan, R. E. P. de Oliveira, S. Li, G. Eda, and
C. J. S. de Matos.

Additional Publications

In addition, the following work was published during the period October 2012 – October
2015, but is beyond the scope of this thesis:

1. Graphene-based passively mode-locked bidirectional fiber ring laser, Opt. Ex-
press 22, 4539 (2014).
V. Mamidala, R. I. Woodward, Y. Yang, H. H. Liu, and K. K. Chow.

2. Fiber-integrated 780 nm source for visible parametric generation, Opt. Express 22,
29726 (2014).
D. J. J. Hu, R. T. Murray, T. Legg, T. H. Runcorn, M. Zhang, R. I. Woodward, J. L. Lim,
Y. Wang, F. Luan, B. Gu, P. P. Shum, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor.

193

http://www.dx.doi.org/10.1364/OE.22.004539
http://www.dx.doi.org/10.1364/OE.22.004539
http://www.dx.doi.org/10.1364/OE.22.029726
http://www.dx.doi.org/10.1364/OE.22.029726


List of Publications

194



REFERENCES

[Abl11] M. J. Ablowitz, T. P. Horikis, S. D. Nixon, and D. J. Frantzeskakis, Dark solitons
in mode-locked lasers, Opt. Lett. 36, 793 (2011).

[Agr01] G. P. Agrawal, Applications of Nonlinear Fibre Optics, Academic Press (2001).

[Agr13] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press (2013).

[Agu13] C. Aguergaray, A. Runge, M. Erkintalo, and N. G. R. Broderick, Raman-driven
destabilization of mode-locked long cavity fiber lasers: fundamental limitations to
energy scalability, Opt. Lett. 38, 2644 (2013).

[Akh05] N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Springer (2005).

[Alf70] R. R. Alfano and S. L. Shapiro, Emission in the region 4000 to 7000 Å via
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ACRONYMS

AFM atomic force microscopy

ASE amplified spontaneous emission

CCD charge-coupled device

CFBG chirped fibre Bragg grating

CNT carbon nanotube

CPA chirped-pulse amplification

CW continuous wave

DOLP degree of linear polarisation

DOP degree of polarisation

FBG fibre Bragg grating

FFT Fast Fourier Transform

FROG frequency-resolved optical gating

FSR free spectral range

FWHM full width at half maximum

FWM four-wave mixing

FWQM full width at quarter maximum

GCO giant-chirp oscillator

GNLSE generalised NLSE

GVD group velocity dispersion

HWP half-wave plate

IR infrared

227



Acronyms

LPE liquid-phase exfoliation

NALM nonlinear amplifying loop mirror

NLSE nonlinear Schrödinger equation

NOLM nonlinear-optical loop mirror

NPE nonlinear polarisation evolution

PC polarisation controller

PCF photonic crystal fibre

PM polarisation-maintaining

PVA polyvinyl alcohol

QD quantum dot

QWP quarter-wave plate

RF radio frequency

SA saturable absorber

SBS stimulated Brillouin scattering

SEM scanning electron microscope

SESAM semiconductor saturable absorber mirror

SHG second-harmonic generation

SPM self-phase modulation

TBP time-bandwidth product

THG third-harmonic generation

TMD transition metal dichalcogenide

TPA two-photon absorption

UV ultraviolet

WDM wavelength division multiplexer

XPM cross-phase modulation

ZDW zero-dispersion wavelength
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