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Dark solitons in laser radiation build-up dynamics
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We reveal the existence of slowly decaying dark solitons in the radiation build-up dynamics of bright pulses in
all-normal dispersion mode-locked fiber lasers, numerically modeled in the framework of a generalized nonlinear
Schrodinger equation. The evolution of noise perturbations to quasistationary dark solitons is examined, and the
significance of background shape and soliton-soliton collisions on the eventual soliton decay is established. We
demonstrate the role of a restoring force in extending soliton interactions in conservative systems to include the
effects of dissipation, as encountered in laser cavities, and generalize our observations to other nonlinear systems.
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I. INTRODUCTION

Within nonlinear dispersive systems, solitons are one of
the most widely studied forms of excitation: self-reinforcing
solitary waves stabilized by a balance between spreading
and focusing effects. Observations of solitons have been
reported in a broad range of distinct environments including
water, Bose-Einstein condensates (BECs), and optical fibers.
Despite striking differences between these domains, acommon
mathematical framework described by a nonlinear Schrodinger
equation (NLSE) permits shared insight through analogies
rooted in the physical description of waves [1].

In fiber, the solutions to the NLSE in regions of anomalous
and normal group-velocity dispersion are bright and dark soli-
tons, respectively. While bright optical solitons are routinely
observed, their dark counterparts are less well studied [2-5].
True dark solitons—satisfying the soliton condition of the
defocusing NLSE—Ilie on an infinite continuous-wave (cw)
background. It has been shown, however, that a dip in the
intensity profile of a bright pulse is sufficient to support
adiabatic dark soliton evolution, provided the width of the
dip is less than a tenth of the bright pulse duration [6,7].

In addition to studies of temporal solitons in transmission,
a wealth of nonlinear physics has been revealed through
soliton dynamics in resonant cavities (e.g., mode-locked fiber
lasers), where the soliton is subject to dissipative effects
and other periodic perturbations. Notably, this has included
observation of rogue waves [8,9], optical turbulence [10],
soliton explosions [11], stable dark pulse generation [12—-14],
and the manifestation of self-organization effects supporting a
variety of localized bright and dark soliton structures [15].
Analysis of such rich nonlinear phenomena is leading to
breakthroughs in understanding of wave dynamics and, in the
context of lasers, improved system performance. One example
of leveraging a technological benefit is the concept of long-
cavity, all-normal dispersion fiber lasers for power-scaling
short-pulse sources [16-21]. Cavity elongation, however, can
lead to an increased susceptibility towards a noisy, partially
mode-locked steady state due to random dephasing of the large
number of longitudinal modes [15].

To date, the majority of studies exploring dynamics in
fiber lasers have focused on this noisy pulse state. Recently,
however, we observed a rich dynamic—as yet, relatively
unstudied—exists in the radiation build-up regime [22,23],
highlighted by the emergence of quasistationary dark soliton
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structures. Here, we numerically study the behavior and cor-
relation of these dark structures, revealing a tendency towards
self-organization and localization, and explore mechanisms
for their eventual decay. In addition to fundamental interest,
greater understanding of the nonlinear physics governing
this dynamic that delays the onset of steady-state laser
operation could have practical implications for the control and
manipulation of laser radiation build-up, and the stabilization
of dark pulse sources.

II. NUMERICAL METHODS
A. Mode-locked fiber laser model

We study an all-normal dispersion mode-locked fiber laser:
a design which has been widely reported as a scalable high-
energy pulse source. A unidirectional ring cavity scheme is
adopted, shown in Fig. 1(a), including a 1 m long ytterbium-
doped fiber amplifier, isolator, saturable absorber, 10 nm
bandpass filter centered at 1060 nm, 10% output coupler,
and a length of passive fiber. We choose a 120 m length of
passive fiber (total cavity length of 121 m) for operation in the
long-cavity laser regime.

Our model propagates a discretized complex field envelope
A(z,T), stored on a numerical grid, sequentially through
each cavity element, iterating until a steady-state regime
is reached. The initial conditions correspond to shot noise
(based on a one photon per mode model, with an associated
random phase). The field envelope in the frequency domain
A(z,w) is related to A(z,T) by the Fourier transform F.
Fiber sections are modeled by a generalized NLSE [Eq. (1)]
formulated in the spectral domain to enable facile inclusion
of frequency-dependent quantities [24]. A scalar model is
used, which assumes propagation along a principal axis of
polarization-maintaining fiber. All fibers have a propagation
constant S(w) and nonlinear parameter y (w), computed using
a characteristic equation eigenmode analysis of a typical step-
index single-mode fiber: at 1060 nm, 8, = 21.3 p52 km~!, and
y =4.9Wkm™'. Frequency-dependent gain g(w) in active
segments is computed using a semianalytic model based
on the spectroscopic properties of a ytterbium-doped fiber
amplifier and appropriate pump power values [25,26]; here all
simulations are performed with a cw pump power of 100 mW
at 975 nm, resulting in a steady-state output average power
of 0.3 mW. Raman scattering is included using the impulse
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FIG. 1. Long-cavity mode-locked fiber laser
(d) spectrogram.

response function %y of a multi-vibrational-mode model, with
fractional Raman contribution f, = 0.18 [27].

We solve Eq. (1) in a reference frame moving at the group
velocity of the central grid frequency wy, corresponding to a
wavelength of 1060 nm, using an efficient embedded Runge-
Kutta in the interaction picture scheme, with adaptive step-size
control [28]:

IA(z,0) _ g(w)
Tz~ o Ak

+i[B(w) — B(wo) — Bi(wo)(w — wp)]A(z,w)
}f{A(z,T)[u — IAGET)?

w — W

+iy[1+

(o]

+00
s / hR<T’>|A(z,T—T/>|2dT’]}. (1)

Nonfiber components are modeled as transfer functions,
including the following: an intensity dependent absorp-
tion operator to describe the instantaneous response of the
saturable absorber, a(l) = ag/(1 + 1/15) + ang, Where [ =
f |A(z,T)|?dT, with modulation depth oy = 15%, saturation
intensity Iy = 10 MW cm~2, and 10% nonsaturable loss oy
(chosen as typical values for state-of-the-art saturable ab-
sorbers [29]); a 10 nm Gaussian-shaped bandpass filter applied
in the frequency domain; and implicit inclusion of optical
isolation through the intrinsic unidirectionality of the model.
One round trip of the simulated laser cavity corresponds to
traversing all components in the model, after which 10% of
the field is taken as the output, with the remainder fed back for
the next iteration.

Previously, we have validated this model by observing
excellent agreement between simulation and experimental
laser performance [20]. For the 121-m-long cavity considered
here, the modeled output properties are summarized in

and steady-state properties: (a) cavity schematic; (b) pulse profile; (c) spectrum;

Figs. 1(b)-1(d), indicating pulse generation with 116 ps full
width at half maximum (FWHM) duration, 0.9 nm spectral
bandwidth, and a characteristic predominantly linear chirp. We
note that while the pulse forms at a random temporal position
within the simulation grid due to noise, for clarity all temporal
representations of the field presented herein are shifted such
that the steady-state pulse is centered on zero.

B. Dark soliton analysis

The temporal dynamics during radiation build-up are
illustrated by recording the field envelope after each round trip
(Fig. 2). Three distinct regimes are identified: an initially dis-
ordered phase (~0 — 50 iterations) where the shot noise seed
field is amplified; a transient regime (~50 — 330 iterations) as
the effect of the saturable absorber and gain saturation localize
the field within a highly structured temporal envelope; and
finally, a steady state (>330 iterations) after the internal pulse
structure decays to leave a coherent, highly chirped bright
pulse.

In the transient regime we observe solitary dark structures
as holes in the background intensity, coexisting in the early
evolution with stochastic radiation and, remarkably, persisting
for hundreds of round trips as quasistationary structures before
decaying. We discover that these structures are dark solitons
by observing strong agreement between their amplitude and
phase profile and the theoretical definition of a dark soliton,
given by [6]

A(T) = Agy/B~2 — sech(T/ To)> explip(T/ Tp)l,  (2)

where A(z) is the intensity dip and B is the blackness parameter
(0 < |B| £ 1) defining the ratio of the dip minimum to the
background, such that the background power level (measured
in watts) is (Ag/B)?, as illustrated in Fig. 3. The 1/e soliton
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FIG. 2. Temporal evolution of laser radiation build-up. Left inset: pulse profile at various iterations and magnified region showing a dark
soliton fitted by its analytic expression. Right inset: magnified region of the evolution showing the tracked dark solitons overlaid as colored

trajectories.

duration is related to the fiber parameters by Tp = ,/B2/ (A%y)
and the phase is

3)

B tanh(T/ Ty) )

T/Ty) = si _'(
¢(T/To) = sin V1 = B2sech®(T/ Ty)

Figure 2 left inset shows that a dark structure during radiation
build-up is well-fitted by the shape of a black (| B| = 1) soliton,
in addition to possessing the expected antisymmetric 7 phase
shift at its center [30]. We confirm that all persistent dips in
intensity fit the functional form of a black (|B| = 1) or gray
(|B] < 1) soliton.

To probe this phenomena, an ensemble of 600 independent
realizations of the same simulation is executed, each starting
from a different randomized shot noise field. All realizations
converge to the same steady-state pulse, but the build-up
dynamics and the number of round trips required for the pulse
to display negligible iteration-to-iteration changes are found to
vary. The laser cavity configuration and component parameters
establish the basin of attraction for the system, creating a
fixed-point attractor (in our case, a stable linearly chirped
bright pulse) towards which initial conditions converge. Thus,
in order to study the persistence of localized patterns in
the transient regime, we develop an analysis technique for
isolating and tracking the dark solitons.

Briefly, the algorithm searches all iterations of every
simulation to identify possible dark soliton structures by
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FIG. 3. Definition of dark soliton, showing the intensity and phase
of a black (|B| = 1) and a gray (|B| = 0.6) soliton. The notation of
Eq. (2) is illustrated by arrows, which relate to the gray soliton.

their shape; this is proceeded by a sorting process to group
structures that, on consecutive round trips, appear within the
same bounded location of time, and can thus be considered
consistent. If a candidate dark structure cannot be found
in the future iteration it is deemed to have disappeared
(i.e., decayed); similarly, if a structure is identified with no
correlation to the previous iteration it is assigned a unique
identity, and can be considered as the birth of a new dark
soliton. This process repeats until all candidate dark structures
of a two-dimensional map are assigned to uniquely identifiable
dark solitons, enabling their motion through the bright pulse
envelope to be tracked. Figure 2 right inset shows a section
of a processed evolution, with colored dots indicating the
trajectories of unique dark solitons; visual inspection confirms
that the algorithm correctly identifies and tracks the dark
structures.

III. DARK SOLITON CREATION AND DECAY

Although unexpected, it is not surprising a posteriori that
dark solitons are observed: spontaneous noise perturbations
create intensity dips, which evolve into dark solitons in the
presence of normal dispersion since these are the stable
solutions to the defocusing NLSE [31]. This is analogous
to arbitrary bright waveforms converging towards soliton
solutions in the anomalous dispersion regime [32], although
dark soliton generation is thresholdless and thus occurs more
readily [33].

In all simulations, the dark solitons eventually decay; thus
the system steady state is a coherent bright pulse. Decay is
interpreted as the walk-off of a dark soliton from the bright
pulse, arising from a mismatch in the group velocity of the
soliton relative to its background. This behavior is expected
for lighter gray (| B| < 1) solitons, which have a shallower and
more gradual transition in their temporal phase, and hence,
experience a greater group velocity mismatch between the
background and the soliton [30]. In our simulations, however,
we identify that the majority of dark structures that form are
in fact dark gray or black solitons, possessing a group velocity
equal or close to the background, and should thus propagate
stably. How can we explain their decay?

032221-3



R.I. WOODWARD AND E. J. R. KELLEHER

Stimulated Raman scattering (SRS) is well known to
contribute to the decay of dark solitons [34,35]; however, here
we observe soliton decay even in the absence of SRS. This was
confirmed by repeating simulations without the inclusion of
the SRS term in Eq. (1). Therefore, we propose an explanation
by considering the shape of their background (i.e., the bright
pulse) and note that a sloped background intensity across a dark
soliton will impart an additional phase change, resulting in a
gradient-dependent group velocity relative to the velocity of its
background [7]. Due to the spontaneous noise-seeded origin of
the dark solitons in our system, they are distributed throughout
the bright pulse. Consequently, the majority exist in the pulse
wings, embedded in a non-uniform background such that the
intensity dips are accelerated by the background gradient. This
acceleration is indicated by curved trajectories of the decaying
solitons as they walk off from the bright pulse (Fig. 2). Finally
we note that, although the peak of the bright pulse can be
considered a point of unstable equilibrium (where a black
soliton experiences a near-uniform intensity and consequently
has a negligible soliton-background group velocity mismatch),
perturbations give rise to a timing jitter that moves the soliton
away from this point of equilibrium and triggers its eventual
decay.

It is remarkable, however, that in the presence of dissipative
processes such as periodic gain and loss and subject to
high-order dispersive and nonlinear perturbations (including
Raman and optical shock formation), dark solitons can remain
stable over many hundreds of round trips. This corresponds
to an effective propagation distance of tens of kilometers
in a nonconservative soliton system, as described by a
generalized NLSE. Using the definition of nonlinear length
Ln = (y Ppk)’l, with peak power Py, = 1.25W, we find that
Lnp = 163 m, confirming that these dark structures persist
for hundreds of nonlinear lengths, suggesting quasistationarity
from self-organization effects [10].

To understand the statistical nature of this phenomena, we
analyze the aggregate decay rates for tracked solitons from
the ensemble, where dark soliton lifetime is defined as the
number of round trips between spontaneously forming and
accumulating a sufficient time delay to move outside the
bright-pulse background. The resulting histogram (Fig. 4)
shows that short-lived dark solitons occur much more fre-
quently than persistent solitons with a long lifetime, and a
heavy-tail distribution is observed. We fit the empirical data
with a power law, which is widely used to describe decay in
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FIG. 4. Histogram of soliton lifetimes, showing decreasing oc-
currence of long-lived dark solitons (and a small number of very
long-lived ones, which deviate from a power law dependence).
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complex systems, in addition to appearing in a broad range
of noise-seeded physical phenomena [36]. The frequency y
is, therefore, proposed to vary with soliton lifetime x as
follows: y = Ax~¥, with normalization factor A =1 x 10°
and exponent k = 2.77.

For lifetimes shorter than approximately 50 round trips, the
power law accurately describes the distribution. Significant
deviation, however, is observed for longer lifetimes. This
suggests that such persistent quasistationary solitons can be
considered as rare events: phenomena which occur with
an unlikely, but non-negligible, probability. Rare events are
particularly interesting in nonlinear systems tending towards
an attractor, helping to reveal aspects of the underlying
dynamics, which could ultimately be controlled for practical
exploitation [1]. These observations pave the way for further
work to quantitatively relate the soliton decay mechanisms to
their lifetime and more generally, to contribute to understand-
ing the underlying factors responsible for rare phenomena.

To phenomenologically relate dark soliton lifetime to the
proposed routes for soliton decay, we plot a 2D histogram of
lifetimes relative to birth position (Fig. 5). The birth position
is defined as the temporal location where the dark soliton
spontaneously forms relative to the center of the bright pulse
background. Longer-lived solitons are seen to cluster close to
the bright pulse center—the point of unstable equilibrium in
our dynamical system. This agrees well with our explanation of
decay rate: dark solitons that form near the bright pulse peak
experience a near-uniform background intensity and have a
small soliton-background group velocity mismatch, yielding
quasistationary solitons with a slow decay rate and a long
lifetime.

IV. INTERACTIONS AND COLLISIONS

A defining feature of soliton solutions of the NLSE is their
ability to pass through each other without changing velocity or
shape as a result of collisions [31]. The collision of ideal dark
solitons (on an infinite cw background) during transmission in
fiber has been shown to cause a mutual time shift, but otherwise
leave their propagation unchanged [37,38]. A larger time shift
is observed for colliding solitons of greater blackness. This
behavior has also been verified for dark pulses on a finite
bright pulse background that satisfy the condition for adiabatic
soliton propagation [38].
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FIG. 6. Collision dynamics between a black |B| = 1 and gray
|B| = 0.6 soliton in transmission: (a) on a cw background (white
dotted lines indicate the collision-induced temporal displacement of
the black soliton); (b) on a bright pulse background.

We illustrate this interaction with a black |B| = 1 and gray
|B| = 0.6 soliton, initially separated by 15 ps, propagating
along a length of passive fiber. For the case of a cw background,
the black soliton travels at the group velocity of the background
(here, equal to the window of the simulation frame) while the
gray soliton moves more quickly, walking into the path of
the black soliton. It can be seen in Fig. 6(a) that the collision
leads to a displacement of the solitons by ~2 ps, relative to
their initial trajectories (denoted by white dotted lines). A
similar evolution is observed for the same soliton pair on a
finite background [Fig. 6(b)]; however, in this case the sloped
background initially slows the gray soliton, delaying the point
of collision. It should also be noted that the bright pulse
disperses leading to a monotonic reduction in the background
intensity, and hence a continuous broadening of the dark
solitons’ duration (as expected from the soliton condition).

Interestingly, we also observe these dynamics in the
radiation build-up regime of our laser—a dissipative system
described by a generalized NLSE—where the output field
extracted once per round trip represents a long-range prop-
agation, sampled every 121 m. Here, the emergence of dark
solitons with varying blackness and position from initially
random fluctuations in the laser intensity leads to a large
number of collisions in the early build-up (see Fig. 2). The
noise-seeded process results in a unique evolution, even for
successive turn-on instances of the same laser [as shown by
another instance of the build-up dynamics in Fig. 7(a), where
the transient regime evolution is clearly distinct from Fig. 2]. In
the transient regime, isolated collision events can be identified:
in Fig. 7 after ~220 round trips, two black solitons collide,
move through each other while experiencing a time shift,
but preserve their phase [Fig. 7(b)]. While it may appear
from the intensity alone that this interaction between like
solitons is repulsive, they are in fact transmitted, experiencing
only temporal displacement as a result of the interaction.
The apparent node between the two solitons, resulting in
a negligible intensity dip at the center of the collision, is
caused by interference between the two fields [38,39]. The
collision-induced time shifting of solitons is a complementary
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Fig. 2, but initiated from a different randomized shot noise field): (a)
temporal evolution; (b) magnified collision region and dark soliton
profiles within the bright pulse, before and after a collision at 200 and
240 round trips, respectively (color is used to identify each soliton).

mechanism that can trigger dark soliton decay from a quasista-
tionary state atop a bright pulse in a near uniform background.

Additionally, these observations suggest that the established
behavior of interacting dark solitons in conservative systems
can extend to dissipative systems exhibiting gain and loss,
and in the presence of higher-order nonlinearities, e.g., Raman
scattering. We verify this by injecting the steady-state bright
pulse back into the laser cavity, recirculating the field over 100
round trips, and considering two distinct cases (Fig. 8): first, we
add a black |[B| = 1 soliton and observe its evolution; second,
we add a black |B| = 1 and gray | B| = 0.6 soliton to create a
collision event. In both cases, the quasistationary solitons are
susceptible to perturbations, mediating their eventual decay;
however, the collision induced time shift with the gray soliton
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FIG. 8. Dark soliton dynamics in a dissipative cavity: (a) black
|B| =1 soliton propagation; (b) black and gray |B| = 0.6 soliton
propagation, resulting in a soliton-soliton collision. The mutual time
shift induced by the collision accelerates the black soliton’s decay
(its original trajectory highlighted by a white dotted line). The weak
perturbations to the background in the early evolution are attributed
to a readjustment of the steady-state cavity dynamic in the presence
of a small, but non-negligible loss of energy due to the inclusion of
the dark soliton.
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[after ~20 round trips in Fig. 8(b)] can be seen to accelerate the
decay process: moving the black soliton away from the point
of unstable equilibrium, and onto the slope of the background
pulse.

V. DISCUSSION

The recirculation of light in fiber resonators offers a unique
opportunity for exploring long-range soliton interactions by
periodically sampling the optical field once per round trip [40].
In particular, mode-locked lasers—where a near constant
bright pulse background is maintained by the restoring forces
of the system—offer a suitable environment for studying
dark soliton evolution, and their interactions. The complexity
of many-moded, long cavity lasers has now been shown to
support the spontaneous emergence of quasistationary dark
solitons that could be studied on laboratory time scales, albeit
requiring state-of-the-art techniques [15,41].

While our analysis of dark soliton dynamics in the
laser radiation build-up regime is performed on a 121 m
mode-locked system, we emphasize that the conclusions are
generally applicable to this type of normally dispersive laser.
We confirm this by observing similar patterns in the evolution
dynamics of cavities with 10 m to kilometer length scales. The
longer cavities, however, which support broader bright pulses
in the steady state due to greater round trip dispersion, act to
sustain the quasistable formation of dark solitons, increasing
their discernibility.

The NLSE underpins numerous nonlinear dispersive sys-
tems: the connection between the dynamics observed in
fiber-optics and BECs is an example of one area receiving
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particular attention [42]. Dark soliton matter waves have
been observed experimentally in BECs, where they can be a
useful diagnostic for probing mesoscopic physics in ultracold
gases [43]; however, they have also been shown to be thermo-
dynamically unstable, resulting in their eventual decay [43,44].
Additionally, soliton-soliton collisions have been observed to
contribute to the decay mechanism [44,45], in analogy with
the dynamics during laser radiation build-up we report here.
We thus suggest that mode-locked fiber lasers could prove a
useful platform for improving understanding of dark soliton
interactions, with applicability to other dissipative systems.
In conclusion, we have observed the spontaneous creation
of slowly decaying dark solitons from noise within the
radiation build-up dynamics of bright pulses in all-normal
dispersion mode-locked fiber lasers. Mechanisms have been
proposed for dark soliton decay, considering the role of
the background gradient and soliton-soliton interactions. The
restoring forces of mode-locked laser cavities were shown
to sustain a bright pulse background, offering a platform for
probing soliton collisions over long distances. We therefore
envisage future studies using mode-locked fiber resonators to
further study dark soliton dynamics, offering insight into the
underlying nonlinear physics of solitons in dissipative systems.
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